File size: 10,820 Bytes
550665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""Official evaluation script for SQuAD version 2.0.



In addition to basic functionality, we also compute additional statistics and

plot precision-recall curves if an additional na_prob.json file is provided.

This file is expected to map question ID's to the model's predicted probability

that a question is unanswerable.

"""
import argparse
import collections
import json
import numpy as np
import os
import re
import string
import sys

OPTS = None

def parse_args():
  parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.')
  parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.')
  parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.')
  parser.add_argument('--out-file', '-o', metavar='eval.json',
                      help='Write accuracy metrics to file (default is stdout).')
  parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json',
                      help='Model estimates of probability of no answer.')
  parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0,
                      help='Predict "" if no-answer probability exceeds this (default = 1.0).')
  parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None,
                      help='Save precision-recall curves to directory.')
  parser.add_argument('--verbose', '-v', action='store_true')
  if len(sys.argv) == 1:
    parser.print_help()
    sys.exit(1)
  return parser.parse_args()

def make_qid_to_has_ans(dataset):
  qid_to_has_ans = {}
  for article in dataset:
    for p in article['paragraphs']:
      for qa in p['qas']:
        qid_to_has_ans[qa['id']] = bool(qa['answers'])
  return qid_to_has_ans

def normalize_answer(s):
  """Lower text and remove punctuation, articles and extra whitespace."""
  def remove_articles(text):
    regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
    return re.sub(regex, ' ', text)
  def white_space_fix(text):
    return ' '.join(text.split())
  def remove_punc(text):
    exclude = set(string.punctuation)
    return ''.join(ch for ch in text if ch not in exclude)
  def lower(text):
    return text.lower()
  return white_space_fix(remove_articles(remove_punc(lower(s))))

def get_tokens(s):
  if not s: return []
  return normalize_answer(s).split()

def compute_exact(a_gold, a_pred):
  return int(normalize_answer(a_gold) == normalize_answer(a_pred))

def compute_f1(a_gold, a_pred):
  gold_toks = get_tokens(a_gold)
  pred_toks = get_tokens(a_pred)
  common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
  num_same = sum(common.values())
  if len(gold_toks) == 0 or len(pred_toks) == 0:
    # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
    return int(gold_toks == pred_toks)
  if num_same == 0:
    return 0
  precision = 1.0 * num_same / len(pred_toks)
  recall = 1.0 * num_same / len(gold_toks)
  f1 = (2 * precision * recall) / (precision + recall)
  return f1

def get_raw_scores(dataset, preds):
  exact_scores = {}
  f1_scores = {}
  for article in dataset:
    for p in article['paragraphs']:
      for qa in p['qas']:
        qid = qa['id']
        gold_answers = [a['text'] for a in qa['answers']
                        if normalize_answer(a['text'])]
        if not gold_answers:
          # For unanswerable questions, only correct answer is empty string
          gold_answers = ['']
        if qid not in preds:
          print('Missing prediction for %s' % qid)
          continue
        a_pred = preds[qid]
        # Take max over all gold answers
        exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
        f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
  return exact_scores, f1_scores

def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
  new_scores = {}
  for qid, s in scores.items():
    pred_na = na_probs[qid] > na_prob_thresh
    if pred_na:
      new_scores[qid] = float(not qid_to_has_ans[qid])
    else:
      new_scores[qid] = s
  return new_scores

def make_eval_dict(exact_scores, f1_scores, qid_list=None):
  if not qid_list:
    total = len(exact_scores)
    return collections.OrderedDict([
        ('exact', 100.0 * sum(exact_scores.values()) / total),
        ('f1', 100.0 * sum(f1_scores.values()) / total),
        ('total', total),
    ])
  else:
    total = len(qid_list)
    return collections.OrderedDict([
        ('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
        ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
        ('total', total),
    ])

def merge_eval(main_eval, new_eval, prefix):
  for k in new_eval:
    main_eval['%s_%s' % (prefix, k)] = new_eval[k]

def plot_pr_curve(precisions, recalls, out_image, title):
  plt.step(recalls, precisions, color='b', alpha=0.2, where='post')
  plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b')
  plt.xlabel('Recall')
  plt.ylabel('Precision')
  plt.xlim([0.0, 1.05])
  plt.ylim([0.0, 1.05])
  plt.title(title)
  plt.savefig(out_image)
  plt.clf()

def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans,

                               out_image=None, title=None):
  qid_list = sorted(na_probs, key=lambda k: na_probs[k])
  true_pos = 0.0
  cur_p = 1.0
  cur_r = 0.0
  precisions = [1.0]
  recalls = [0.0]
  avg_prec = 0.0
  for i, qid in enumerate(qid_list):
    if qid_to_has_ans[qid]:
      true_pos += scores[qid]
    cur_p = true_pos / float(i+1)
    cur_r = true_pos / float(num_true_pos)
    if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
      # i.e., if we can put a threshold after this point
      avg_prec += cur_p * (cur_r - recalls[-1])
      precisions.append(cur_p)
      recalls.append(cur_r)
  if out_image:
    plot_pr_curve(precisions, recalls, out_image, title)
  return {'ap': 100.0 * avg_prec}

def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs, 

                                  qid_to_has_ans, out_image_dir):
  if out_image_dir and not os.path.exists(out_image_dir):
    os.makedirs(out_image_dir)
  num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
  if num_true_pos == 0:
    return
  pr_exact = make_precision_recall_eval(
      exact_raw, na_probs, num_true_pos, qid_to_has_ans,
      out_image=os.path.join(out_image_dir, 'pr_exact.png'),
      title='Precision-Recall curve for Exact Match score')
  pr_f1 = make_precision_recall_eval(
      f1_raw, na_probs, num_true_pos, qid_to_has_ans,
      out_image=os.path.join(out_image_dir, 'pr_f1.png'),
      title='Precision-Recall curve for F1 score')
  oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
  pr_oracle = make_precision_recall_eval(
      oracle_scores, na_probs, num_true_pos, qid_to_has_ans,
      out_image=os.path.join(out_image_dir, 'pr_oracle.png'),
      title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)')
  merge_eval(main_eval, pr_exact, 'pr_exact')
  merge_eval(main_eval, pr_f1, 'pr_f1')
  merge_eval(main_eval, pr_oracle, 'pr_oracle')

def histogram_na_prob(na_probs, qid_list, image_dir, name):
  if not qid_list:
    return
  x = [na_probs[k] for k in qid_list]
  weights = np.ones_like(x) / float(len(x))
  plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
  plt.xlabel('Model probability of no-answer')
  plt.ylabel('Proportion of dataset')
  plt.title('Histogram of no-answer probability: %s' % name)
  plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name))
  plt.clf()

def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
  num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
  cur_score = num_no_ans
  best_score = cur_score
  best_thresh = 0.0
  qid_list = sorted(na_probs, key=lambda k: na_probs[k])
  for i, qid in enumerate(qid_list):
    if qid not in scores: continue
    if qid_to_has_ans[qid]:
      diff = scores[qid]
    else:
      if preds[qid]:
        diff = -1
      else:
        diff = 0
    cur_score += diff
    if cur_score > best_score:
      best_score = cur_score
      best_thresh = na_probs[qid]
  return 100.0 * best_score / len(scores), best_thresh

def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
  best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
  best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
  main_eval['best_exact'] = best_exact
  main_eval['best_exact_thresh'] = exact_thresh
  main_eval['best_f1'] = best_f1
  main_eval['best_f1_thresh'] = f1_thresh

def main():
  with open(OPTS.data_file) as f:
    dataset_json = json.load(f)
    dataset = dataset_json['data']
  with open(OPTS.pred_file) as f:
    preds = json.load(f)
  if OPTS.na_prob_file:
    with open(OPTS.na_prob_file) as f:
      na_probs = json.load(f)
  else:
    na_probs = {k: 0.0 for k in preds}
  qid_to_has_ans = make_qid_to_has_ans(dataset)  # maps qid to True/False
  has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
  no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
  exact_raw, f1_raw = get_raw_scores(dataset, preds)
  exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
                                        OPTS.na_prob_thresh)
  f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
                                     OPTS.na_prob_thresh)
  out_eval = make_eval_dict(exact_thresh, f1_thresh)
  if has_ans_qids:
    has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
    merge_eval(out_eval, has_ans_eval, 'HasAns')
  if no_ans_qids:
    no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
    merge_eval(out_eval, no_ans_eval, 'NoAns')
  if OPTS.na_prob_file:
    find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
  if OPTS.na_prob_file and OPTS.out_image_dir:
    run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs, 
                                  qid_to_has_ans, OPTS.out_image_dir)
    histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns')
    histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns')
  if OPTS.out_file:
    with open(OPTS.out_file, 'w') as f:
      json.dump(out_eval, f)
  else:
    print(json.dumps(out_eval, indent=2))

if __name__ == '__main__':
  OPTS = parse_args()
  if OPTS.out_image_dir:
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt 
  main()