File size: 2,306 Bytes
550665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---

title: HTK
app_file: app1.py
sdk: gradio
sdk_version: 4.36.1
---

# MRC-RetroReader

## Introduction

MRC-RetroReader is a machine reading comprehension (MRC) model designed for reading comprehension tasks. The model leverages advanced neural network architectures to provide high accuracy in understanding and responding to textual queries.

## Table of Contents

- [Introduction](#introduction)
- [Table of Contents](#table-of-contents)
- [Installation](#installation)
- [Usage](#usage)
- [Features](#features)
- [Dependencies](#dependencies)
- [Configuration](#configuration)
- [Documentation](#documentation)
- [Examples](#examples)
- [Troubleshooting](#troubleshooting)
- [Contributors](#contributors)
- [License](#license)

## Installation

1. Clone the repository:
    ```

    git clone https://github.com/phanhoang1803/MRC-RetroReader.git

    cd MRC-RetroReader

    ```

2. Install the required dependencies:

    ```

    pip install -r requirements.txt

    ```


## Usage

- For notebooks: to running automatically, turn off wandb, warning if necessary:
```

wandb off

import warnings

warnings.filterwarnings('ignore')

``` 
- To train the model using the SQuAD v2 dataset:
```

python train_squad_v2.py --config path-to-yaml-file --module intensive --batch_size batch_size

```

## Features

- High accuracy MRC model
- Easy to train on custom datasets
- Configurable parameters for model tuning

## Dependencies

- Python 3.x
- PyTorch
- Transformers
- Tokenizers

For a full list of dependencies, see `requirements.txt`.

## Configuration

Configuration files can be found in the `configs` directory. Adjust the parameters in these files to customize the model training and evaluation.

## Documentation

For detailed documentation, refer to the `documentation` directory. This includes:
- Model architecture
- Training procedures
- Evaluation metrics

## Examples

Example training and evaluation scripts are provided in the repository. To train on the SQuAD v2 dataset:


## Troubleshooting

For common issues and their solutions, refer to the `troubleshooting guide`.

## Contributors

- phanhoang1803

## License

This project is licensed under the MIT License. See the `LICENSE` file for details.