File size: 2,306 Bytes
550665c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
title: HTK
app_file: app1.py
sdk: gradio
sdk_version: 4.36.1
---
# MRC-RetroReader
## Introduction
MRC-RetroReader is a machine reading comprehension (MRC) model designed for reading comprehension tasks. The model leverages advanced neural network architectures to provide high accuracy in understanding and responding to textual queries.
## Table of Contents
- [Introduction](#introduction)
- [Table of Contents](#table-of-contents)
- [Installation](#installation)
- [Usage](#usage)
- [Features](#features)
- [Dependencies](#dependencies)
- [Configuration](#configuration)
- [Documentation](#documentation)
- [Examples](#examples)
- [Troubleshooting](#troubleshooting)
- [Contributors](#contributors)
- [License](#license)
## Installation
1. Clone the repository:
```
git clone https://github.com/phanhoang1803/MRC-RetroReader.git
cd MRC-RetroReader
```
2. Install the required dependencies:
```
pip install -r requirements.txt
```
## Usage
- For notebooks: to running automatically, turn off wandb, warning if necessary:
```
wandb off
import warnings
warnings.filterwarnings('ignore')
```
- To train the model using the SQuAD v2 dataset:
```
python train_squad_v2.py --config path-to-yaml-file --module intensive --batch_size batch_size
```
## Features
- High accuracy MRC model
- Easy to train on custom datasets
- Configurable parameters for model tuning
## Dependencies
- Python 3.x
- PyTorch
- Transformers
- Tokenizers
For a full list of dependencies, see `requirements.txt`.
## Configuration
Configuration files can be found in the `configs` directory. Adjust the parameters in these files to customize the model training and evaluation.
## Documentation
For detailed documentation, refer to the `documentation` directory. This includes:
- Model architecture
- Training procedures
- Evaluation metrics
## Examples
Example training and evaluation scripts are provided in the repository. To train on the SQuAD v2 dataset:
## Troubleshooting
For common issues and their solutions, refer to the `troubleshooting guide`.
## Contributors
- phanhoang1803
## License
This project is licensed under the MIT License. See the `LICENSE` file for details.
|