Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
import random
|
7 |
+
|
8 |
+
# Initialize the base model and specific LoRA
|
9 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
10 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
11 |
+
pipe.to("cuda")
|
12 |
+
|
13 |
+
lora_repo = "XLabs-AI/flux-RealismLora"
|
14 |
+
trigger_word = "" # Leave trigger_word blank if not used.
|
15 |
+
pipe.load_lora_weights(lora_repo)
|
16 |
+
|
17 |
+
MAX_SEED = 2**32-1
|
18 |
+
|
19 |
+
@spaces.GPU(duration=80)
|
20 |
+
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
21 |
+
# Set random seed for reproducibility
|
22 |
+
if randomize_seed:
|
23 |
+
seed = random.randint(0, MAX_SEED)
|
24 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
25 |
+
|
26 |
+
# Update progress bar (0% saat mulai)
|
27 |
+
progress(0, "Starting image generation...")
|
28 |
+
|
29 |
+
# Generate image with progress updates
|
30 |
+
for i in range(1, steps + 1):
|
31 |
+
# Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
|
32 |
+
if i % (steps // 10) == 0: # Update every 10% of the steps
|
33 |
+
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
34 |
+
|
35 |
+
# Generate image using the pipeline
|
36 |
+
image = pipe(
|
37 |
+
prompt=f"{prompt} {trigger_word}",
|
38 |
+
num_inference_steps=steps,
|
39 |
+
guidance_scale=cfg_scale,
|
40 |
+
width=width,
|
41 |
+
height=height,
|
42 |
+
generator=generator,
|
43 |
+
joint_attention_kwargs={"scale": lora_scale},
|
44 |
+
).images[0]
|
45 |
+
|
46 |
+
# Final update (100%)
|
47 |
+
progress(100, "Completed!")
|
48 |
+
|
49 |
+
yield image, seed
|
50 |
+
|
51 |
+
# Example cached image and settings
|
52 |
+
example_image_path = "example0.webp" # Replace with the actual path to the example image
|
53 |
+
example_prompt = """A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately.
|
54 |
+
|
55 |
+
The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. The lanyard prominently displays the "CagliostroLab" text.
|
56 |
+
|
57 |
+
Behind her, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy of her presentation."""
|
58 |
+
example_cfg_scale = 3.2
|
59 |
+
example_steps = 32
|
60 |
+
example_width = 1152
|
61 |
+
example_height = 896
|
62 |
+
example_seed = 3981632454
|
63 |
+
example_lora_scale = 0.85
|
64 |
+
|
65 |
+
def load_example():
|
66 |
+
# Load example image from file
|
67 |
+
example_image = Image.open(example_image_path)
|
68 |
+
return example_prompt, example_cfg_scale, example_steps, False, example_seed, example_width, example_height, example_lora_scale, example_image
|
69 |
+
|
70 |
+
with gr.Blocks() as app:
|
71 |
+
gr.Markdown("# Flux LoRA Image Generator")
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column(scale=3):
|
74 |
+
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
|
75 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
|
76 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
|
77 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
|
78 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
|
79 |
+
randomize_seed = gr.Checkbox(False, label="Randomize seed")
|
80 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
|
81 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
|
82 |
+
with gr.Column(scale=1):
|
83 |
+
result = gr.Image(label="Generated Image")
|
84 |
+
|
85 |
+
# Automatically load example data and image when the interface is launched
|
86 |
+
app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
|
87 |
+
|
88 |
+
generate_button = gr.Button("Generate")
|
89 |
+
|
90 |
+
generate_button.click(
|
91 |
+
run_lora,
|
92 |
+
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
|
93 |
+
outputs=[result, seed]
|
94 |
+
)
|
95 |
+
|
96 |
+
app.queue()
|
97 |
+
app.launch()
|