|
import spaces |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
import random |
|
|
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) |
|
|
|
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA" |
|
trigger_word = "" |
|
pipe.load_lora_weights(lora_repo) |
|
|
|
pipe.to("cuda") |
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
@spaces.GPU() |
|
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
|
|
|
|
progress(0, "Starting image generation...") |
|
|
|
|
|
for i in range(1, steps + 1): |
|
|
|
if i % (steps // 10) == 0: |
|
progress(i / steps * 100, f"Processing step {i} of {steps}...") |
|
|
|
|
|
image = pipe( |
|
prompt=f"{prompt} {trigger_word}", |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
).images[0] |
|
|
|
|
|
progress(100, "Completed!") |
|
|
|
yield image, seed |
|
|
|
|
|
example_image_path = "example0.webp" |
|
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene.""" |
|
example_cfg_scale = 3.2 |
|
example_steps = 32 |
|
example_width = 1152 |
|
example_height = 896 |
|
example_seed = 3981632454 |
|
example_lora_scale = 0.85 |
|
|
|
def load_example(): |
|
|
|
example_image = Image.open(example_image_path) |
|
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("# Flux RealismLora Image Generator") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5) |
|
generate_button = gr.Button("Generate") |
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps) |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height) |
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed) |
|
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale) |
|
with gr.Column(scale=1): |
|
result = gr.Image(label="Generated Image") |
|
|
|
|
|
app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]) |
|
|
|
generate_button.click( |
|
run_lora, |
|
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], |
|
outputs=[result, seed] |
|
) |
|
|
|
app.queue() |
|
app.launch() |