Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,332 Bytes
6c9da67 bc68abe 897c6c0 bc68abe 897c6c0 bc68abe 897c6c0 1666a97 bc68abe 6c9da67 fa82983 897c6c0 bc68abe dfd025a b7508ac bc68abe 1666a97 897c6c0 bc68abe 897c6c0 48ab7a2 897c6c0 c30ca1a 897c6c0 1666a97 897c6c0 f0394a9 48ab7a2 f0394a9 897c6c0 16ce666 897c6c0 16ce666 897c6c0 5221f40 897c6c0 bc68abe 897c6c0 1666a97 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 bc68abe 897c6c0 6726142 bc68abe 897c6c0 bc68abe 14fe83c bc68abe 14fe83c b66a115 bc68abe 897c6c0 bc68abe 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 bc68abe 897c6c0 bc68abe 897c6c0 bc68abe 897c6c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import sys
sys.path.append('./')
import gradio as gr
import spaces
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import cv2
import torch
import random
from transformers import pipeline
os.system("pip install -e ./controlnet_aux")
from controlnet_aux import OpenposeDetector, CannyDetector
from depth_anything_v2.dpt import DepthAnythingV2
from huggingface_hub import hf_hub_download
from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN_GATED")
login(token=hf_token)
MAX_SEED = np.iinfo(np.int32).max
# ๋ฒ์ญ๊ธฐ ์ค์
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
def translate_to_english(text):
if any('\uAC00' <= char <= '\uD7A3' for char in text):
return translator(text, max_length=512)[0]['translation_text']
return text
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl'
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetPipeline, FluxControlNetModel
from diffusers.models import FluxMultiControlNetModel
base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
controlnet = FluxMultiControlNetModel([controlnet])
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
pipe.to("cuda")
mode_mapping = {"์บ๋":0, "ํ์ผ":1, "๊น์ด":2, "๋ธ๋ฌ":3, "์คํํฌ์ฆ":4, "๊ทธ๋ ์ด์ค์ผ์ผ":5, "์ ํ์ง": 6}
strength_mapping = {"์บ๋":0.65, "ํ์ผ":0.45, "๊น์ด":0.55, "๋ธ๋ฌ":0.45, "์คํํฌ์ฆ":0.55, "๊ทธ๋ ์ด์ค์ผ์ผ":0.45, "์ ํ์ง": 0.4}
canny = CannyDetector()
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
torch.backends.cuda.matmul.allow_tf32 = True
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.enable_model_cpu_offload() # for saving memory
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def extract_depth(image):
image = np.asarray(image)
depth = model.infer_image(image[:, :, ::-1])
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
gray_depth = Image.fromarray(depth).convert('RGB')
return gray_depth
def extract_openpose(img):
processed_image_open_pose = open_pose(img, hand_and_face=True)
return processed_image_open_pose
def extract_canny(image):
processed_image_canny = canny(image)
return processed_image_canny
def apply_gaussian_blur(image, kernel_size=(21, 21)):
image = convert_from_image_to_cv2(image)
blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0))
return blurred_image
def convert_to_grayscale(image):
image = convert_from_image_to_cv2(image)
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
return gray_image
def add_gaussian_noise(image, mean=0, sigma=10):
image = convert_from_image_to_cv2(image)
noise = np.random.normal(mean, sigma, image.shape)
noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8))
return noisy_image
def tile(input_image, resolution=768):
input_image = convert_from_image_to_cv2(input_image)
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
img = convert_from_cv2_to_image(img)
return img
def resize_img(input_image, max_side=768, min_side=512, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
@spaces.GPU()
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
control_mode_num = mode_mapping[control_mode]
prompt = translate_to_english(prompt)
if cond_in is None:
if image_in is not None:
image_in = resize_img(load_image(image_in))
if control_mode == "Canny":
control_image = extract_canny(image_in)
elif control_mode == "Depth":
control_image = extract_depth(image_in)
elif control_mode == "OpenPose":
control_image = extract_openpose(image_in)
elif control_mode == "Blur":
control_image = apply_gaussian_blur(image_in)
elif control_mode == "LowQuality":
control_image = add_gaussian_noise(image_in)
elif control_mode == "Grayscale":
control_image = convert_to_grayscale(image_in)
elif control_mode == "Tile":
control_image = tile(image_in)
else:
control_image = resize_img(load_image(cond_in))
width, height = control_image.size
image = pipe(
prompt,
control_image=[control_image],
control_mode=[control_mode_num],
width=width,
height=height,
controlnet_conditioning_scale=[control_strength],
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
generator=torch.manual_seed(seed),
).images[0]
torch.cuda.empty_cache()
return image, control_image, gr.update(visible=True)
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
cond_in = gr.Image(label="Upload Processed Control Image", sources=["upload"], type="filepath")
image_in = gr.Image(label="Extract Condition from Reference Image (Optional)", sources=["upload"], type="filepath")
prompt = gr.Textbox(label="Prompt", value="Highest Quality")
with gr.Accordion("ControlNet"):
control_mode = gr.Radio(
["Canny", "Depth", "OpenPose", "Grayscale", "Blur", "Tile", "LowQuality"],
label="Mode",
value="Grayscale",
info="Select control mode, applies to all images"
)
control_strength = gr.Slider(
label="Control Strength",
minimum=0,
maximum=1.0,
step=0.05,
value=0.50,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=24)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5)
submit_btn = gr.Button("Submit")
with gr.Column():
result = gr.Image(label="Result")
processed_cond = gr.Image(label="Preprocessed Condition")
submit_btn.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False
).then(
fn = infer,
inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed],
outputs = [result, processed_cond],
show_api=False
)
demo.queue(api_open=False)
demo.launch() |