|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.models import ModelMixin, UNet3DConditionModel |
|
from diffusers.models.attention_processor import LoRAAttnProcessor |
|
from diffusers.utils import ( |
|
floats_tensor, |
|
logging, |
|
skip_mps, |
|
torch_device, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
from ..test_modeling_common import ModelTesterMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
def create_lora_layers(model): |
|
lora_attn_procs = {} |
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) |
|
lora_attn_procs[name] = lora_attn_procs[name].to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
lora_attn_procs[name].to_q_lora.up.weight += 1 |
|
lora_attn_procs[name].to_k_lora.up.weight += 1 |
|
lora_attn_procs[name].to_v_lora.up.weight += 1 |
|
lora_attn_procs[name].to_out_lora.up.weight += 1 |
|
|
|
return lora_attn_procs |
|
|
|
|
|
@skip_mps |
|
class UNet3DConditionModelTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = UNet3DConditionModel |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 4 |
|
num_frames = 4 |
|
sizes = (32, 32) |
|
|
|
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 4, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 4, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (32, 64), |
|
"down_block_types": ( |
|
"CrossAttnDownBlock3D", |
|
"DownBlock3D", |
|
), |
|
"up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"), |
|
"cross_attention_dim": 32, |
|
"attention_head_dim": 8, |
|
"out_channels": 4, |
|
"in_channels": 4, |
|
"layers_per_block": 1, |
|
"sample_size": 32, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_enable_works(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
assert ( |
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ |
|
== "XFormersAttnProcessor" |
|
), "xformers is not enabled" |
|
|
|
|
|
def test_forward_with_norm_groups(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["norm_num_groups"] = 32 |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
|
|
def test_determinism(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
|
|
if torch_device == "mps" and isinstance(model, ModelMixin): |
|
model(**self.dummy_input) |
|
|
|
first = model(**inputs_dict) |
|
if isinstance(first, dict): |
|
first = first.sample |
|
|
|
second = model(**inputs_dict) |
|
if isinstance(second, dict): |
|
second = second.sample |
|
|
|
out_1 = first.cpu().numpy() |
|
out_2 = second.cpu().numpy() |
|
out_1 = out_1[~np.isnan(out_1)] |
|
out_2 = out_2[~np.isnan(out_2)] |
|
max_diff = np.amax(np.abs(out_1 - out_2)) |
|
self.assertLessEqual(max_diff, 1e-5) |
|
|
|
def test_model_attention_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = 8 |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
model.set_attention_slice("auto") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice("max") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice(2) |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_lora_xformers_on_off(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = 4 |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
lora_attn_procs = create_lora_layers(model) |
|
model.set_attn_processor(lora_attn_procs) |
|
|
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict).sample |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
on_sample = model(**inputs_dict).sample |
|
|
|
model.disable_xformers_memory_efficient_attention() |
|
off_sample = model(**inputs_dict).sample |
|
|
|
assert (sample - on_sample).abs().max() < 1e-4 |
|
assert (sample - off_sample).abs().max() < 1e-4 |
|
|
|
|
|
|
|
|