|
import os |
|
from datetime import datetime |
|
from pathlib import Path |
|
import torch |
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from einops import repeat |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from torchvision import transforms |
|
from transformers import CLIPVisionModelWithProjection |
|
import torch.nn.functional as F |
|
import gc |
|
from huggingface_hub import hf_hub_download |
|
|
|
from musepose.models.pose_guider import PoseGuider |
|
from musepose.models.unet_2d_condition import UNet2DConditionModel |
|
from musepose.models.unet_3d import UNet3DConditionModel |
|
from musepose.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline |
|
from musepose.utils.util import get_fps, read_frames, save_videos_grid |
|
from downloading_weights import download_models |
|
|
|
|
|
import spaces |
|
|
|
|
|
class MusePoseInference: |
|
def __init__(self, |
|
model_dir, |
|
output_dir): |
|
self.image_gen_model_paths = { |
|
"pretrained_base_model": os.path.join(model_dir, "sd-image-variations-diffusers"), |
|
"pretrained_vae": os.path.join(model_dir, "sd-vae-ft-mse"), |
|
"image_encoder": os.path.join(model_dir, "image_encoder"), |
|
} |
|
self.musepose_model_paths = { |
|
"denoising_unet": os.path.join(model_dir, "MusePose", "denoising_unet.pth"), |
|
"reference_unet": os.path.join(model_dir, "MusePose", "reference_unet.pth"), |
|
"pose_guider": os.path.join(model_dir, "MusePose", "pose_guider.pth"), |
|
"motion_module": os.path.join(model_dir, "MusePose", "motion_module.pth"), |
|
} |
|
self.inference_config_path = os.path.join("configs", "inference_v2.yaml") |
|
self.vae = None |
|
self.reference_unet = None |
|
self.denoising_unet = None |
|
self.pose_guider = None |
|
self.image_enc = None |
|
self.pipe = None |
|
self.model_dir = model_dir |
|
self.output_dir = os.path.join(output_dir, "musepose_inference") |
|
if not os.path.exists(self.output_dir): |
|
os.makedirs(self.output_dir) |
|
|
|
@spaces.GPU |
|
def infer_musepose( |
|
self, |
|
ref_image_path: str, |
|
pose_video_path: str, |
|
weight_dtype: str, |
|
W: int, |
|
H: int, |
|
L: int, |
|
S: int, |
|
O: int, |
|
cfg: float, |
|
seed: int, |
|
steps: int, |
|
fps: int, |
|
skip: int |
|
): |
|
download_models(model_dir=self.model_dir) |
|
print(f"Model Paths: {self.musepose_model_paths}\n{self.image_gen_model_paths}\n{self.inference_config_path}") |
|
print(f"Input Image Path: {ref_image_path}") |
|
print(f"Pose Video Path: {pose_video_path}") |
|
print(f"Dtype: {weight_dtype}") |
|
print(f"Width: {W}") |
|
print(f"Height: {H}") |
|
print(f"Video Frame Length: {L}") |
|
print(f"VIDEO SLICE FRAME LENGTH:: {S}") |
|
print(f"VIDEO SLICE OVERLAP_FRAME NUMBER: {O}") |
|
print(f"CFG: {cfg}") |
|
print(f"Seed: {seed}") |
|
print(f"Steps: {steps}") |
|
print(f"FPS: {fps}") |
|
print(f"Skip: {skip}") |
|
|
|
image_file_name = os.path.splitext(os.path.basename(ref_image_path))[0] |
|
pose_video_file_name = os.path.splitext(os.path.basename(pose_video_path))[0] |
|
output_file_name = f"img_{image_file_name}_pose_{pose_video_file_name}" |
|
output_path = os.path.abspath(os.path.join(self.output_dir, f'{output_file_name}.mp4')) |
|
output_path_demo = os.path.abspath(os.path.join(self.output_dir, f'{output_file_name}_demo.mp4')) |
|
|
|
if weight_dtype == "fp16": |
|
weight_dtype = torch.float16 |
|
else: |
|
weight_dtype = torch.float32 |
|
|
|
self.vae = AutoencoderKL.from_pretrained( |
|
self.image_gen_model_paths["pretrained_vae"], |
|
).to("cuda", dtype=weight_dtype) |
|
|
|
self.reference_unet = UNet2DConditionModel.from_pretrained( |
|
self.image_gen_model_paths["pretrained_base_model"], |
|
subfolder="unet", |
|
).to(dtype=weight_dtype, device="cuda") |
|
|
|
inference_config_path = self.inference_config_path |
|
infer_config = OmegaConf.load(inference_config_path) |
|
|
|
self.denoising_unet = UNet3DConditionModel.from_pretrained_2d( |
|
Path(self.image_gen_model_paths["pretrained_base_model"]), |
|
Path(self.musepose_model_paths["motion_module"]), |
|
subfolder="unet", |
|
unet_additional_kwargs=infer_config.unet_additional_kwargs, |
|
).to(dtype=weight_dtype, device="cuda") |
|
|
|
self.pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to( |
|
dtype=weight_dtype, device="cuda" |
|
) |
|
|
|
self.image_enc = CLIPVisionModelWithProjection.from_pretrained( |
|
self.image_gen_model_paths["image_encoder"] |
|
).to(dtype=weight_dtype, device="cuda") |
|
|
|
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) |
|
scheduler = DDIMScheduler(**sched_kwargs) |
|
|
|
generator = torch.manual_seed(seed) |
|
|
|
width, height = W, H |
|
|
|
|
|
self.denoising_unet.load_state_dict( |
|
torch.load(self.musepose_model_paths["denoising_unet"], map_location="cpu"), |
|
strict=False, |
|
) |
|
self.reference_unet.load_state_dict( |
|
torch.load(self.musepose_model_paths["reference_unet"], map_location="cpu"), |
|
) |
|
self.pose_guider.load_state_dict( |
|
torch.load(self.musepose_model_paths["pose_guider"], map_location="cpu"), |
|
) |
|
self.pipe = Pose2VideoPipeline( |
|
vae=self.vae, |
|
image_encoder=self.image_enc, |
|
reference_unet=self.reference_unet, |
|
denoising_unet=self.denoising_unet, |
|
pose_guider=self.pose_guider, |
|
scheduler=scheduler, |
|
) |
|
self.pipe = self.pipe.to("cuda", dtype=weight_dtype) |
|
|
|
print("image: ", ref_image_path, "pose_video: ", pose_video_path) |
|
|
|
ref_image_pil = Image.open(ref_image_path).convert("RGB") |
|
|
|
pose_list = [] |
|
pose_tensor_list = [] |
|
pose_images = read_frames(pose_video_path) |
|
src_fps = get_fps(pose_video_path) |
|
print(f"pose video has {len(pose_images)} frames, with {src_fps} fps") |
|
L = min(L, len(pose_images)) |
|
pose_transform = transforms.Compose( |
|
[transforms.Resize((height, width)), transforms.ToTensor()] |
|
) |
|
original_width, original_height = 0, 0 |
|
|
|
pose_images = pose_images[::skip + 1] |
|
print("processing length:", len(pose_images)) |
|
src_fps = src_fps // (skip + 1) |
|
print("fps", src_fps) |
|
L = L // ((skip + 1)) |
|
|
|
for pose_image_pil in pose_images[: L]: |
|
pose_tensor_list.append(pose_transform(pose_image_pil)) |
|
pose_list.append(pose_image_pil) |
|
original_width, original_height = pose_image_pil.size |
|
pose_image_pil = pose_image_pil.resize((width, height)) |
|
|
|
|
|
last_segment_frame_num = (L - S) % (S - O) |
|
repeart_frame_num = (S - O - last_segment_frame_num) % (S - O) |
|
for i in range(repeart_frame_num): |
|
pose_list.append(pose_list[-1]) |
|
pose_tensor_list.append(pose_tensor_list[-1]) |
|
|
|
ref_image_tensor = pose_transform(ref_image_pil) |
|
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) |
|
ref_image_tensor = repeat(ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=L) |
|
|
|
pose_tensor = torch.stack(pose_tensor_list, dim=0) |
|
pose_tensor = pose_tensor.transpose(0, 1) |
|
pose_tensor = pose_tensor.unsqueeze(0) |
|
|
|
video = self.pipe( |
|
ref_image_pil, |
|
pose_list, |
|
width, |
|
height, |
|
len(pose_list), |
|
steps, |
|
cfg, |
|
generator=generator, |
|
context_frames=S, |
|
context_stride=1, |
|
context_overlap=O, |
|
).videos |
|
|
|
result = self.scale_video(video[:, :, :L], original_width, original_height) |
|
save_videos_grid( |
|
result, |
|
output_path, |
|
n_rows=1, |
|
fps=src_fps if fps is None or fps < 0 else fps, |
|
) |
|
|
|
video = torch.cat([ref_image_tensor, pose_tensor[:, :, :L], video[:, :, :L]], dim=0) |
|
video = self.scale_video(video, original_width, original_height) |
|
save_videos_grid( |
|
video, |
|
output_path_demo, |
|
n_rows=3, |
|
fps=src_fps if fps is None or fps < 0 else fps, |
|
) |
|
self.release_vram() |
|
return output_path, output_path_demo |
|
|
|
def release_vram(self): |
|
models = [ |
|
'vae', 'reference_unet', 'denoising_unet', |
|
'pose_guider', 'image_enc', 'pipe' |
|
] |
|
|
|
for model_name in models: |
|
model = getattr(self, model_name, None) |
|
if model is not None: |
|
del model |
|
setattr(self, model_name, None) |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
@staticmethod |
|
def scale_video(video, width, height): |
|
video_reshaped = video.view(-1, *video.shape[2:]) |
|
scaled_video = F.interpolate(video_reshaped, size=(height, width), mode='bilinear', align_corners=False) |
|
scaled_video = scaled_video.view(*video.shape[:2], scaled_video.shape[1], height, |
|
width) |
|
|
|
return scaled_video |