File size: 4,576 Bytes
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) OpenMMLab. All rights reserved.
import os
import numpy as np
import warnings

try:
    import mmcv
except ImportError:
    warnings.warn(
        "The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'"
    )

try:
    from mmpose.apis import inference_topdown
    from mmpose.apis import init_model as init_pose_estimator
    from mmpose.evaluation.functional import nms
    from mmpose.utils import adapt_mmdet_pipeline
    from mmpose.structures import merge_data_samples
except ImportError:
    warnings.warn(
        "The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'"
    )
        
try:
    from mmdet.apis import inference_detector, init_detector
except ImportError:
    warnings.warn(
        "The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'"
    )


class Wholebody:
    def __init__(self, 
                 det_config=None, det_ckpt=None, 
                 pose_config=None, pose_ckpt=None,
                 device="cpu"):
        
        if det_config is None:
            det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py")
        
        if pose_config is None:
            pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py")

        if det_ckpt is None:
            det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
        
        if pose_ckpt is None:
            pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth"
        
        # build detector
        self.detector = init_detector(det_config, det_ckpt, device=device)
        self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)

        # build pose estimator
        self.pose_estimator = init_pose_estimator(
            pose_config,
            pose_ckpt,
            device=device)
    
    def to(self, device):
        self.detector.to(device)
        self.pose_estimator.to(device)
        return self
    
    def __call__(self, oriImg):
        # predict bbox
        det_result = inference_detector(self.detector, oriImg)
        pred_instance = det_result.pred_instances.cpu().numpy()
        bboxes = np.concatenate(
            (pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
        bboxes = bboxes[np.logical_and(pred_instance.labels == 0,
                                    pred_instance.scores > 0.5)]
    
        # set NMS threshold
        bboxes = bboxes[nms(bboxes, 0.7), :4]

        # predict keypoints
        if len(bboxes) == 0:
            pose_results = inference_topdown(self.pose_estimator, oriImg)
        else:
            pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes)
        preds = merge_data_samples(pose_results)
        preds = preds.pred_instances

        # preds = pose_results[0].pred_instances
        keypoints = preds.get('transformed_keypoints',
                                        preds.keypoints)
        if 'keypoint_scores' in preds:
            scores = preds.keypoint_scores
        else:
            scores = np.ones(keypoints.shape[:-1])

        if 'keypoints_visible' in preds:
            visible = preds.keypoints_visible
        else:
            visible = np.ones(keypoints.shape[:-1])
        keypoints_info = np.concatenate(
            (keypoints, scores[..., None], visible[..., None]),
            axis=-1)
        # compute neck joint
        neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
        # neck score when visualizing pred
        neck[:, 2:4] = np.logical_and(
            keypoints_info[:, 5, 2:4] > 0.3,
            keypoints_info[:, 6, 2:4] > 0.3).astype(int)
        new_keypoints_info = np.insert(
            keypoints_info, 17, neck, axis=1)
        mmpose_idx = [
            17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
        ]
        openpose_idx = [
            1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
        ]
        new_keypoints_info[:, openpose_idx] = \
            new_keypoints_info[:, mmpose_idx]
        keypoints_info = new_keypoints_info

        keypoints, scores, visible = keypoints_info[
            ..., :2], keypoints_info[..., 2], keypoints_info[..., 3]
        
        return keypoints, scores