File size: 9,342 Bytes
0a9bdfb ab6505a 0a9bdfb 9852d5d 0a9bdfb 3c0f460 0a9bdfb 3c0f460 0a9bdfb 3c0f460 0a9bdfb ab6505a 64c7f5d c30ec73 0a9bdfb da4dd26 0a9bdfb ab6505a 0a9bdfb 2d1f579 0a9bdfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
from datetime import datetime
from pathlib import Path
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
import torch.nn.functional as F
import gc
from huggingface_hub import hf_hub_download
from musepose.models.pose_guider import PoseGuider
from musepose.models.unet_2d_condition import UNet2DConditionModel
from musepose.models.unet_3d import UNet3DConditionModel
from musepose.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from musepose.utils.util import get_fps, read_frames, save_videos_grid
from downloading_weights import download_models
# ZeroGPU
import spaces
class MusePoseInference:
def __init__(self,
model_dir,
output_dir):
self.image_gen_model_paths = {
"pretrained_base_model": os.path.join(model_dir, "sd-image-variations-diffusers"),
"pretrained_vae": os.path.join(model_dir, "sd-vae-ft-mse"),
"image_encoder": os.path.join(model_dir, "image_encoder"),
}
self.musepose_model_paths = {
"denoising_unet": os.path.join(model_dir, "MusePose", "denoising_unet.pth"),
"reference_unet": os.path.join(model_dir, "MusePose", "reference_unet.pth"),
"pose_guider": os.path.join(model_dir, "MusePose", "pose_guider.pth"),
"motion_module": os.path.join(model_dir, "MusePose", "motion_module.pth"),
}
self.inference_config_path = os.path.join("configs", "inference_v2.yaml")
self.vae = None
self.reference_unet = None
self.denoising_unet = None
self.pose_guider = None
self.image_enc = None
self.pipe = None
self.model_dir = model_dir
self.output_dir = os.path.join(output_dir, "musepose_inference")
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
@spaces.GPU(duration=120)
def infer_musepose(
self,
ref_image_path: str,
pose_video_path: str,
weight_dtype: str,
W: int,
H: int,
L: int,
S: int,
O: int,
cfg: float,
seed: int,
steps: int,
fps: int,
skip: int
):
download_models(model_dir=self.model_dir)
print(f"Model Paths: {self.musepose_model_paths}\n{self.image_gen_model_paths}\n{self.inference_config_path}")
print(f"Input Image Path: {ref_image_path}")
print(f"Pose Video Path: {pose_video_path}")
print(f"Dtype: {weight_dtype}")
print(f"Width: {W}")
print(f"Height: {H}")
print(f"Video Frame Length: {L}")
print(f"VIDEO SLICE FRAME LENGTH:: {S}")
print(f"VIDEO SLICE OVERLAP_FRAME NUMBER: {O}")
print(f"CFG: {cfg}")
print(f"Seed: {seed}")
print(f"Steps: {steps}")
print(f"FPS: {fps}")
print(f"Skip: {skip}")
output_filename = f"output_temp"
output_path = os.path.abspath(os.path.join(self.output_dir, f'{output_filename}.mp4'))
output_path_demo = os.path.abspath(os.path.join(self.output_dir, f'{output_filename}_demo.mp4'))
if weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
self.vae = AutoencoderKL.from_pretrained(
self.image_gen_model_paths["pretrained_vae"],
).to("cuda", dtype=weight_dtype)
self.reference_unet = UNet2DConditionModel.from_pretrained(
self.image_gen_model_paths["pretrained_base_model"],
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = self.inference_config_path
infer_config = OmegaConf.load(inference_config_path)
self.denoising_unet = UNet3DConditionModel.from_pretrained_2d(
Path(self.image_gen_model_paths["pretrained_base_model"]),
Path(self.musepose_model_paths["motion_module"]),
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
self.pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device="cuda"
)
self.image_enc = CLIPVisionModelWithProjection.from_pretrained(
self.image_gen_model_paths["image_encoder"]
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
generator = torch.manual_seed(seed)
width, height = W, H
# load pretrained weights
self.denoising_unet.load_state_dict(
torch.load(self.musepose_model_paths["denoising_unet"], map_location="cpu"),
strict=False,
)
self.reference_unet.load_state_dict(
torch.load(self.musepose_model_paths["reference_unet"], map_location="cpu"),
)
self.pose_guider.load_state_dict(
torch.load(self.musepose_model_paths["pose_guider"], map_location="cpu"),
)
self.pipe = Pose2VideoPipeline(
vae=self.vae,
image_encoder=self.image_enc,
reference_unet=self.reference_unet,
denoising_unet=self.denoising_unet,
pose_guider=self.pose_guider,
scheduler=scheduler,
)
self.pipe = self.pipe.to("cuda", dtype=weight_dtype)
print("image: ", ref_image_path, "pose_video: ", pose_video_path)
ref_image_pil = Image.open(ref_image_path).convert("RGB")
pose_list = []
pose_tensor_list = []
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
print(f"pose video has {len(pose_images)} frames, with {src_fps} fps")
L = min(L, len(pose_images))
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
original_width, original_height = 0, 0
pose_images = pose_images[::skip + 1]
print("processing length:", len(pose_images))
src_fps = src_fps // (skip + 1)
print("fps", src_fps)
L = L // ((skip + 1))
for pose_image_pil in pose_images[: L]:
pose_tensor_list.append(pose_transform(pose_image_pil))
pose_list.append(pose_image_pil)
original_width, original_height = pose_image_pil.size
pose_image_pil = pose_image_pil.resize((width, height))
# repeart the last segment
last_segment_frame_num = (L - S) % (S - O)
repeart_frame_num = (S - O - last_segment_frame_num) % (S - O)
for i in range(repeart_frame_num):
pose_list.append(pose_list[-1])
pose_tensor_list.append(pose_tensor_list[-1])
ref_image_tensor = pose_transform(ref_image_pil) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
ref_image_tensor = repeat(ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=L)
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
pose_tensor = pose_tensor.transpose(0, 1)
pose_tensor = pose_tensor.unsqueeze(0)
video = self.pipe(
ref_image_pil,
pose_list,
width,
height,
len(pose_list),
steps,
cfg,
generator=generator,
context_frames=S,
context_stride=1,
context_overlap=O,
).videos
result = self.scale_video(video[:, :, :L], original_width, original_height)
save_videos_grid(
result,
output_path,
n_rows=1,
fps=src_fps if fps is None or fps < 0 else fps,
)
video = torch.cat([ref_image_tensor, pose_tensor[:, :, :L], video[:, :, :L]], dim=0)
video = self.scale_video(video, original_width, original_height)
save_videos_grid(
video,
output_path_demo,
n_rows=3,
fps=src_fps if fps is None or fps < 0 else fps,
)
self.release_vram()
return output_path, output_path_demo
def release_vram(self):
models = [
'vae', 'reference_unet', 'denoising_unet',
'pose_guider', 'image_enc', 'pipe'
]
for model_name in models:
model = getattr(self, model_name, None)
if model is not None:
del model
setattr(self, model_name, None)
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@staticmethod
def scale_video(video, width, height):
video_reshaped = video.view(-1, *video.shape[2:]) # [batch*frames, channels, height, width]
scaled_video = F.interpolate(video_reshaped, size=(height, width), mode='bilinear', align_corners=False)
scaled_video = scaled_video.view(*video.shape[:2], scaled_video.shape[1], height,
width) # [batch, frames, channels, height, width]
return scaled_video |