Spaces:
Running
on
Zero
Running
on
Zero
Update app-backup.py
Browse files- app-backup.py +49 -30
app-backup.py
CHANGED
@@ -7,11 +7,21 @@ from PIL import Image
|
|
7 |
import spaces
|
8 |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
-
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
12 |
import copy
|
13 |
import random
|
14 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Load LoRAs from JSON file
|
17 |
with open('loras.json', 'r') as f:
|
@@ -48,9 +58,9 @@ class calculateDuration:
|
|
48 |
|
49 |
def update_selection(evt: gr.SelectData, width, height):
|
50 |
selected_lora = loras[evt.index]
|
51 |
-
new_placeholder = f"
|
52 |
lora_repo = selected_lora["repo"]
|
53 |
-
updated_text = f"###
|
54 |
if "aspect" in selected_lora:
|
55 |
if selected_lora["aspect"] == "portrait":
|
56 |
width = 768
|
@@ -73,7 +83,7 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
73 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
74 |
pipe.to("cuda")
|
75 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
76 |
-
with calculateDuration("
|
77 |
# Generate image
|
78 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
79 |
prompt=prompt_mash,
|
@@ -90,33 +100,36 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
90 |
|
91 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
92 |
if selected_index is None:
|
93 |
-
raise gr.Error("
|
|
|
|
|
|
|
94 |
selected_lora = loras[selected_index]
|
95 |
lora_path = selected_lora["repo"]
|
96 |
trigger_word = selected_lora["trigger_word"]
|
97 |
if(trigger_word):
|
98 |
if "trigger_position" in selected_lora:
|
99 |
if selected_lora["trigger_position"] == "prepend":
|
100 |
-
prompt_mash = f"{trigger_word} {
|
101 |
else:
|
102 |
-
prompt_mash = f"{
|
103 |
else:
|
104 |
-
prompt_mash = f"{trigger_word} {
|
105 |
else:
|
106 |
-
prompt_mash =
|
107 |
|
108 |
-
with calculateDuration("
|
109 |
pipe.unload_lora_weights()
|
110 |
|
111 |
# Load LoRA weights
|
112 |
-
with calculateDuration(f"
|
113 |
if "weights" in selected_lora:
|
114 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
115 |
else:
|
116 |
pipe.load_lora_weights(lora_path)
|
117 |
|
118 |
# Set random seed for reproducibility
|
119 |
-
with calculateDuration("
|
120 |
if randomize_seed:
|
121 |
seed = random.randint(0, MAX_SEED)
|
122 |
|
@@ -129,9 +142,10 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
129 |
step_counter+=1
|
130 |
final_image = image
|
131 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
132 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
133 |
|
134 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
|
|
135 |
|
136 |
def get_huggingface_safetensors(link):
|
137 |
split_link = link.split("/")
|
@@ -216,48 +230,52 @@ footer {
|
|
216 |
}
|
217 |
"""
|
218 |
|
|
|
219 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
|
220 |
|
221 |
selected_index = gr.State(None)
|
222 |
with gr.Row():
|
223 |
with gr.Column(scale=3):
|
224 |
-
prompt = gr.Textbox(label="
|
225 |
with gr.Column(scale=1, elem_id="gen_column"):
|
226 |
-
generate_button = gr.Button("
|
227 |
with gr.Row():
|
228 |
with gr.Column():
|
229 |
selected_info = gr.Markdown("")
|
230 |
gallery = gr.Gallery(
|
231 |
[(item["image"], item["title"]) for item in loras],
|
232 |
-
label="LoRA
|
233 |
allow_preview=False,
|
234 |
columns=3,
|
235 |
elem_id="gallery"
|
236 |
)
|
237 |
with gr.Group():
|
238 |
-
custom_lora = gr.Textbox(label="
|
239 |
-
gr.Markdown("[
|
240 |
custom_lora_info = gr.HTML(visible=False)
|
241 |
-
custom_lora_button = gr.Button("
|
242 |
with gr.Column():
|
243 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
244 |
-
result = gr.Image(label="
|
|
|
|
|
245 |
|
246 |
with gr.Row():
|
247 |
-
with gr.Accordion("
|
248 |
with gr.Column():
|
249 |
with gr.Row():
|
250 |
-
cfg_scale = gr.Slider(label="CFG
|
251 |
-
steps = gr.Slider(label="
|
252 |
|
253 |
with gr.Row():
|
254 |
-
width = gr.Slider(label="
|
255 |
-
height = gr.Slider(label="
|
256 |
|
257 |
with gr.Row():
|
258 |
-
randomize_seed = gr.Checkbox(True, label="
|
259 |
-
seed = gr.Slider(label="
|
260 |
-
lora_scale = gr.Slider(label="LoRA
|
|
|
261 |
|
262 |
gallery.select(
|
263 |
update_selection,
|
@@ -273,11 +291,12 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
|
|
273 |
remove_custom_lora,
|
274 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
275 |
)
|
|
|
276 |
gr.on(
|
277 |
triggers=[generate_button.click, prompt.submit],
|
278 |
fn=run_lora,
|
279 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
280 |
-
outputs=[result, seed, progress_bar]
|
281 |
)
|
282 |
|
283 |
app.queue()
|
|
|
7 |
import spaces
|
8 |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
|
|
10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
11 |
import copy
|
12 |
import random
|
13 |
import time
|
14 |
+
from transformers import pipeline
|
15 |
+
|
16 |
+
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
|
17 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
18 |
+
|
19 |
+
# ํ๋กฌํํธ ์ฒ๋ฆฌ ํจ์ ์ถ๊ฐ
|
20 |
+
def process_prompt(prompt):
|
21 |
+
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
|
22 |
+
translated = translator(prompt)[0]['translation_text']
|
23 |
+
return prompt, translated
|
24 |
+
return prompt, prompt
|
25 |
|
26 |
# Load LoRAs from JSON file
|
27 |
with open('loras.json', 'r') as f:
|
|
|
58 |
|
59 |
def update_selection(evt: gr.SelectData, width, height):
|
60 |
selected_lora = loras[evt.index]
|
61 |
+
new_placeholder = f"{selected_lora['title']}๋ฅผ ์ํ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์"
|
62 |
lora_repo = selected_lora["repo"]
|
63 |
+
updated_text = f"### ์ ํ๋จ: [{lora_repo}](https://huggingface.co/{lora_repo}) โจ"
|
64 |
if "aspect" in selected_lora:
|
65 |
if selected_lora["aspect"] == "portrait":
|
66 |
width = 768
|
|
|
83 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
84 |
pipe.to("cuda")
|
85 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
86 |
+
with calculateDuration("์ด๋ฏธ์ง ์์ฑ"):
|
87 |
# Generate image
|
88 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
89 |
prompt=prompt_mash,
|
|
|
100 |
|
101 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
102 |
if selected_index is None:
|
103 |
+
raise gr.Error("์งํํ๊ธฐ ์ ์ LoRA๋ฅผ ์ ํํด์ผ ํฉ๋๋ค.")
|
104 |
+
|
105 |
+
original_prompt, english_prompt = process_prompt(prompt)
|
106 |
+
|
107 |
selected_lora = loras[selected_index]
|
108 |
lora_path = selected_lora["repo"]
|
109 |
trigger_word = selected_lora["trigger_word"]
|
110 |
if(trigger_word):
|
111 |
if "trigger_position" in selected_lora:
|
112 |
if selected_lora["trigger_position"] == "prepend":
|
113 |
+
prompt_mash = f"{trigger_word} {english_prompt}"
|
114 |
else:
|
115 |
+
prompt_mash = f"{english_prompt} {trigger_word}"
|
116 |
else:
|
117 |
+
prompt_mash = f"{trigger_word} {english_prompt}"
|
118 |
else:
|
119 |
+
prompt_mash = english_prompt
|
120 |
|
121 |
+
with calculateDuration("LoRA ์ธ๋ก๋"):
|
122 |
pipe.unload_lora_weights()
|
123 |
|
124 |
# Load LoRA weights
|
125 |
+
with calculateDuration(f"{selected_lora['title']}์ LoRA ๊ฐ์ค์น ๋ก๋"):
|
126 |
if "weights" in selected_lora:
|
127 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
128 |
else:
|
129 |
pipe.load_lora_weights(lora_path)
|
130 |
|
131 |
# Set random seed for reproducibility
|
132 |
+
with calculateDuration("์๋ ๋ฌด์์ํ"):
|
133 |
if randomize_seed:
|
134 |
seed = random.randint(0, MAX_SEED)
|
135 |
|
|
|
142 |
step_counter+=1
|
143 |
final_image = image
|
144 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
145 |
+
yield image, seed, gr.update(value=progress_bar, visible=True), original_prompt, english_prompt
|
146 |
|
147 |
+
yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
|
148 |
+
|
149 |
|
150 |
def get_huggingface_safetensors(link):
|
151 |
split_link = link.split("/")
|
|
|
230 |
}
|
231 |
"""
|
232 |
|
233 |
+
|
234 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
|
235 |
|
236 |
selected_index = gr.State(None)
|
237 |
with gr.Row():
|
238 |
with gr.Column(scale=3):
|
239 |
+
prompt = gr.Textbox(label="ํ๋กฌํํธ", lines=1, placeholder="LoRA๋ฅผ ์ ํํ ํ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์ (ํ๊ธ ๋๋ ์์ด)")
|
240 |
with gr.Column(scale=1, elem_id="gen_column"):
|
241 |
+
generate_button = gr.Button("์์ฑ", variant="primary", elem_id="gen_btn")
|
242 |
with gr.Row():
|
243 |
with gr.Column():
|
244 |
selected_info = gr.Markdown("")
|
245 |
gallery = gr.Gallery(
|
246 |
[(item["image"], item["title"]) for item in loras],
|
247 |
+
label="LoRA ๊ฐค๋ฌ๋ฆฌ",
|
248 |
allow_preview=False,
|
249 |
columns=3,
|
250 |
elem_id="gallery"
|
251 |
)
|
252 |
with gr.Group():
|
253 |
+
custom_lora = gr.Textbox(label="์ปค์คํ
LoRA", info="LoRA Hugging Face ๊ฒฝ๋ก", placeholder="multimodalart/vintage-ads-flux")
|
254 |
+
gr.Markdown("[FLUX LoRA ๋ชฉ๋ก ํ์ธ](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
255 |
custom_lora_info = gr.HTML(visible=False)
|
256 |
+
custom_lora_button = gr.Button("์ปค์คํ
LoRA ์ ๊ฑฐ", visible=False)
|
257 |
with gr.Column():
|
258 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
259 |
+
result = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง")
|
260 |
+
original_prompt_display = gr.Textbox(label="์๋ณธ ํ๋กฌํํธ")
|
261 |
+
english_prompt_display = gr.Textbox(label="์์ด ํ๋กฌํํธ")
|
262 |
|
263 |
with gr.Row():
|
264 |
+
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
|
265 |
with gr.Column():
|
266 |
with gr.Row():
|
267 |
+
cfg_scale = gr.Slider(label="CFG ์ค์ผ์ผ", minimum=1, maximum=20, step=0.5, value=3.5)
|
268 |
+
steps = gr.Slider(label="์คํ
", minimum=1, maximum=50, step=1, value=28)
|
269 |
|
270 |
with gr.Row():
|
271 |
+
width = gr.Slider(label="๋๋น", minimum=256, maximum=1536, step=64, value=1024)
|
272 |
+
height = gr.Slider(label="๋์ด", minimum=256, maximum=1536, step=64, value=1024)
|
273 |
|
274 |
with gr.Row():
|
275 |
+
randomize_seed = gr.Checkbox(True, label="์๋ ๋ฌด์์ํ")
|
276 |
+
seed = gr.Slider(label="์๋", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
277 |
+
lora_scale = gr.Slider(label="LoRA ์ค์ผ์ผ", minimum=0, maximum=3, step=0.01, value=0.95)
|
278 |
+
|
279 |
|
280 |
gallery.select(
|
281 |
update_selection,
|
|
|
291 |
remove_custom_lora,
|
292 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
293 |
)
|
294 |
+
|
295 |
gr.on(
|
296 |
triggers=[generate_button.click, prompt.submit],
|
297 |
fn=run_lora,
|
298 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
299 |
+
outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
|
300 |
)
|
301 |
|
302 |
app.queue()
|