Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,18 +4,22 @@ import warnings
|
|
| 4 |
import os
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
-
import spaces
|
| 8 |
import torch
|
| 9 |
from diffusers import FluxControlNetModel
|
| 10 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 11 |
from gradio_imageslider import ImageSlider
|
| 12 |
from PIL import Image
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
-
|
| 15 |
-
# 메모리 관리를 위한 gc 추가
|
| 16 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
gc.collect()
|
| 18 |
-
torch.cuda.
|
|
|
|
| 19 |
|
| 20 |
css = """
|
| 21 |
#col-container {
|
|
@@ -24,98 +28,61 @@ css = """
|
|
| 24 |
}
|
| 25 |
"""
|
| 26 |
|
| 27 |
-
|
| 28 |
-
if torch.cuda.is_available():
|
| 29 |
-
power_device = "GPU"
|
| 30 |
-
device = "cuda"
|
| 31 |
-
dtype = torch.float16 # Use float16 for minimum memory
|
| 32 |
-
# Set CUDA memory fraction to 50%
|
| 33 |
-
torch.cuda.set_per_process_memory_fraction(0.5)
|
| 34 |
-
else:
|
| 35 |
-
power_device = "CPU"
|
| 36 |
-
device = "cpu"
|
| 37 |
-
dtype = torch.float32
|
| 38 |
-
|
| 39 |
-
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 40 |
|
| 41 |
# Minimal model configuration
|
| 42 |
model_config = {
|
| 43 |
"low_cpu_mem_usage": True,
|
| 44 |
"torch_dtype": dtype,
|
| 45 |
"use_safetensors": True,
|
| 46 |
-
"
|
| 47 |
}
|
| 48 |
|
| 49 |
model_path = snapshot_download(
|
| 50 |
repo_id="black-forest-labs/FLUX.1-dev",
|
| 51 |
repo_type="model",
|
| 52 |
-
ignore_patterns=["*.md", "*..gitattributes", "*.bin"],
|
| 53 |
local_dir="FLUX.1-dev",
|
| 54 |
token=huggingface_token,
|
| 55 |
)
|
| 56 |
|
| 57 |
-
# Load models
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
).to(device)
|
| 63 |
-
|
| 64 |
-
pipe = FluxControlNetPipeline.from_pretrained(
|
| 65 |
-
model_path,
|
| 66 |
-
controlnet=controlnet,
|
| 67 |
-
**model_config
|
| 68 |
-
)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
except Exception as e:
|
| 81 |
-
print(f"Error loading models: {e}")
|
| 82 |
-
raise
|
| 83 |
|
| 84 |
-
# Extremely reduced parameters
|
| 85 |
MAX_SEED = 1000000
|
| 86 |
-
MAX_PIXEL_BUDGET =
|
| 87 |
-
|
| 88 |
-
def
|
| 89 |
-
if torch.cuda.is_available():
|
| 90 |
-
memory_allocated = torch.cuda.memory_allocated(0)
|
| 91 |
-
memory_reserved = torch.cuda.memory_reserved(0)
|
| 92 |
-
if memory_allocated/memory_reserved > 0.7: # 70% threshold
|
| 93 |
-
gc.collect()
|
| 94 |
-
torch.cuda.empty_cache()
|
| 95 |
-
return True
|
| 96 |
-
|
| 97 |
-
def process_input(input_image, upscale_factor, **kwargs):
|
| 98 |
input_image = input_image.convert('RGB')
|
| 99 |
|
| 100 |
-
#
|
| 101 |
w, h = input_image.size
|
| 102 |
max_size = int(np.sqrt(MAX_PIXEL_BUDGET))
|
| 103 |
-
if w > max_size or h > max_size:
|
| 104 |
-
if w > h:
|
| 105 |
-
new_w = max_size
|
| 106 |
-
new_h = int(h * max_size / w)
|
| 107 |
-
else:
|
| 108 |
-
new_h = max_size
|
| 109 |
-
new_w = int(w * max_size / h)
|
| 110 |
-
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
return input_image.resize((w, h)), w, h
|
| 117 |
|
| 118 |
-
@spaces.GPU
|
| 119 |
def infer(
|
| 120 |
seed,
|
| 121 |
randomize_seed,
|
|
@@ -127,12 +94,11 @@ def infer(
|
|
| 127 |
):
|
| 128 |
try:
|
| 129 |
gc.collect()
|
| 130 |
-
torch.cuda.empty_cache()
|
| 131 |
|
| 132 |
if randomize_seed:
|
| 133 |
seed = random.randint(0, MAX_SEED)
|
| 134 |
|
| 135 |
-
input_image, w, h
|
| 136 |
|
| 137 |
with torch.inference_mode():
|
| 138 |
generator = torch.Generator().manual_seed(seed)
|
|
@@ -141,19 +107,18 @@ def infer(
|
|
| 141 |
control_image=input_image,
|
| 142 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 143 |
num_inference_steps=num_inference_steps,
|
| 144 |
-
guidance_scale=
|
| 145 |
height=h,
|
| 146 |
width=w,
|
| 147 |
generator=generator,
|
| 148 |
).images[0]
|
| 149 |
|
| 150 |
gc.collect()
|
| 151 |
-
torch.cuda.empty_cache()
|
| 152 |
|
| 153 |
return [input_image, image, seed]
|
| 154 |
|
| 155 |
except Exception as e:
|
| 156 |
-
gr.Error(f"
|
| 157 |
return None
|
| 158 |
|
| 159 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
@@ -167,23 +132,23 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 167 |
num_inference_steps = gr.Slider(
|
| 168 |
label="Steps",
|
| 169 |
minimum=1,
|
| 170 |
-
maximum=
|
| 171 |
step=1,
|
| 172 |
-
value=
|
| 173 |
)
|
| 174 |
upscale_factor = gr.Slider(
|
| 175 |
label="Scale",
|
| 176 |
minimum=1,
|
| 177 |
-
maximum=1,
|
| 178 |
step=1,
|
| 179 |
value=1,
|
| 180 |
)
|
| 181 |
controlnet_conditioning_scale = gr.Slider(
|
| 182 |
label="Control Scale",
|
| 183 |
minimum=0.1,
|
| 184 |
-
maximum=0.
|
| 185 |
step=0.1,
|
| 186 |
-
value=0.
|
| 187 |
)
|
| 188 |
seed = gr.Slider(
|
| 189 |
label="Seed",
|
|
@@ -201,8 +166,8 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 201 |
|
| 202 |
examples = gr.Examples(
|
| 203 |
examples=[
|
| 204 |
-
[42, False, os.path.join(current_dir, "z1.webp"),
|
| 205 |
-
[42, False, os.path.join(current_dir, "z2.webp"),
|
| 206 |
],
|
| 207 |
inputs=[
|
| 208 |
seed,
|
|
@@ -214,7 +179,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 214 |
],
|
| 215 |
fn=infer,
|
| 216 |
outputs=result,
|
| 217 |
-
cache_examples=False,
|
| 218 |
)
|
| 219 |
|
| 220 |
gr.on(
|
|
@@ -232,7 +197,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 232 |
show_api=False,
|
| 233 |
)
|
| 234 |
|
| 235 |
-
#
|
| 236 |
demo.queue(max_size=1).launch(
|
| 237 |
share=False,
|
| 238 |
debug=True,
|
|
|
|
| 4 |
import os
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
|
|
|
| 7 |
import torch
|
| 8 |
from diffusers import FluxControlNetModel
|
| 9 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 10 |
from gradio_imageslider import ImageSlider
|
| 11 |
from PIL import Image
|
| 12 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
| 13 |
import gc
|
| 14 |
+
|
| 15 |
+
# Force CPU usage
|
| 16 |
+
device = "cpu"
|
| 17 |
+
dtype = torch.float32
|
| 18 |
+
|
| 19 |
+
# Clear memory
|
| 20 |
gc.collect()
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
torch.cuda.empty_cache()
|
| 23 |
|
| 24 |
css = """
|
| 25 |
#col-container {
|
|
|
|
| 28 |
}
|
| 29 |
"""
|
| 30 |
|
| 31 |
+
huggingface_token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Minimal model configuration
|
| 34 |
model_config = {
|
| 35 |
"low_cpu_mem_usage": True,
|
| 36 |
"torch_dtype": dtype,
|
| 37 |
"use_safetensors": True,
|
| 38 |
+
"device_map": "cpu"
|
| 39 |
}
|
| 40 |
|
| 41 |
model_path = snapshot_download(
|
| 42 |
repo_id="black-forest-labs/FLUX.1-dev",
|
| 43 |
repo_type="model",
|
| 44 |
+
ignore_patterns=["*.md", "*..gitattributes", "*.bin"],
|
| 45 |
local_dir="FLUX.1-dev",
|
| 46 |
token=huggingface_token,
|
| 47 |
)
|
| 48 |
|
| 49 |
+
# Load models on CPU
|
| 50 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
| 51 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
| 52 |
+
**model_config
|
| 53 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
| 56 |
+
model_path,
|
| 57 |
+
controlnet=controlnet,
|
| 58 |
+
**model_config
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Enable optimizations
|
| 62 |
+
pipe.enable_attention_slicing(1)
|
| 63 |
+
pipe.enable_vae_slicing()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
|
|
|
| 65 |
MAX_SEED = 1000000
|
| 66 |
+
MAX_PIXEL_BUDGET = 64 * 64 # Extremely reduced
|
| 67 |
+
|
| 68 |
+
def process_input(input_image, upscale_factor):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
input_image = input_image.convert('RGB')
|
| 70 |
|
| 71 |
+
# Aggressive size reduction
|
| 72 |
w, h = input_image.size
|
| 73 |
max_size = int(np.sqrt(MAX_PIXEL_BUDGET))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
# Resize to very small size
|
| 76 |
+
new_w = min(w, max_size)
|
| 77 |
+
new_h = min(h, max_size)
|
| 78 |
+
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
|
| 79 |
+
|
| 80 |
+
# Ensure dimensions are multiples of 8
|
| 81 |
+
w = new_w - new_w % 8
|
| 82 |
+
h = new_h - new_h % 8
|
| 83 |
|
| 84 |
+
return input_image.resize((w, h)), w, h
|
| 85 |
|
|
|
|
| 86 |
def infer(
|
| 87 |
seed,
|
| 88 |
randomize_seed,
|
|
|
|
| 94 |
):
|
| 95 |
try:
|
| 96 |
gc.collect()
|
|
|
|
| 97 |
|
| 98 |
if randomize_seed:
|
| 99 |
seed = random.randint(0, MAX_SEED)
|
| 100 |
|
| 101 |
+
input_image, w, h = process_input(input_image, upscale_factor)
|
| 102 |
|
| 103 |
with torch.inference_mode():
|
| 104 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 107 |
control_image=input_image,
|
| 108 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 109 |
num_inference_steps=num_inference_steps,
|
| 110 |
+
guidance_scale=1.5,
|
| 111 |
height=h,
|
| 112 |
width=w,
|
| 113 |
generator=generator,
|
| 114 |
).images[0]
|
| 115 |
|
| 116 |
gc.collect()
|
|
|
|
| 117 |
|
| 118 |
return [input_image, image, seed]
|
| 119 |
|
| 120 |
except Exception as e:
|
| 121 |
+
gr.Error(f"Error: {str(e)}")
|
| 122 |
return None
|
| 123 |
|
| 124 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
|
|
| 132 |
num_inference_steps = gr.Slider(
|
| 133 |
label="Steps",
|
| 134 |
minimum=1,
|
| 135 |
+
maximum=10,
|
| 136 |
step=1,
|
| 137 |
+
value=5,
|
| 138 |
)
|
| 139 |
upscale_factor = gr.Slider(
|
| 140 |
label="Scale",
|
| 141 |
minimum=1,
|
| 142 |
+
maximum=1,
|
| 143 |
step=1,
|
| 144 |
value=1,
|
| 145 |
)
|
| 146 |
controlnet_conditioning_scale = gr.Slider(
|
| 147 |
label="Control Scale",
|
| 148 |
minimum=0.1,
|
| 149 |
+
maximum=0.3,
|
| 150 |
step=0.1,
|
| 151 |
+
value=0.2,
|
| 152 |
)
|
| 153 |
seed = gr.Slider(
|
| 154 |
label="Seed",
|
|
|
|
| 166 |
|
| 167 |
examples = gr.Examples(
|
| 168 |
examples=[
|
| 169 |
+
[42, False, os.path.join(current_dir, "z1.webp"), 5, 1, 0.2],
|
| 170 |
+
[42, False, os.path.join(current_dir, "z2.webp"), 5, 1, 0.2],
|
| 171 |
],
|
| 172 |
inputs=[
|
| 173 |
seed,
|
|
|
|
| 179 |
],
|
| 180 |
fn=infer,
|
| 181 |
outputs=result,
|
| 182 |
+
cache_examples=False,
|
| 183 |
)
|
| 184 |
|
| 185 |
gr.on(
|
|
|
|
| 197 |
show_api=False,
|
| 198 |
)
|
| 199 |
|
| 200 |
+
# Minimal launch configuration
|
| 201 |
demo.queue(max_size=1).launch(
|
| 202 |
share=False,
|
| 203 |
debug=True,
|