fancyfeast commited on
Commit
8997b7a
·
1 Parent(s): c6034c4

Ooops, forgot no GPU on this instance

Browse files
Files changed (1) hide show
  1. app.py +2 -3
app.py CHANGED
@@ -30,7 +30,7 @@ class DetectorModelOwl(nn.Module):
30
  self.linear2 = nn.Linear(n_hidden * 2, 2)
31
 
32
  def forward(self, pixel_values: torch.Tensor, labels: torch.Tensor | None = None):
33
- with torch.autocast("cuda", dtype=torch.bfloat16):
34
  # Embed the image
35
  outputs = self.owl(pixel_values=pixel_values, output_hidden_states=True)
36
  x = outputs.last_hidden_state # B, N, C
@@ -74,7 +74,7 @@ def owl_predict(image: Image.Image) -> bool:
74
  input_image = TVF.normalize(preped, [0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711])
75
 
76
  # Run
77
- logits, = model(input_image.to('cuda').unsqueeze(0), None)
78
  probs = F.softmax(logits, dim=1)
79
  prediction = torch.argmax(probs.cpu(), dim=1)
80
 
@@ -106,7 +106,6 @@ def predict(image: Image.Image, conf_threshold: float):
106
  model = DetectorModelOwl("google/owlv2-base-patch16-ensemble", dropout=0.0)
107
  model.load_state_dict(torch.load("far5y1y5-8000.pt", map_location="cpu"))
108
  model.eval()
109
- model.cuda()
110
 
111
  # Load YOLO model
112
  yolo_model = YOLO("yolo11x-train28-best.pt")
 
30
  self.linear2 = nn.Linear(n_hidden * 2, 2)
31
 
32
  def forward(self, pixel_values: torch.Tensor, labels: torch.Tensor | None = None):
33
+ with torch.autocast("cpu", dtype=torch.bfloat16):
34
  # Embed the image
35
  outputs = self.owl(pixel_values=pixel_values, output_hidden_states=True)
36
  x = outputs.last_hidden_state # B, N, C
 
74
  input_image = TVF.normalize(preped, [0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711])
75
 
76
  # Run
77
+ logits, = model(input_image.to('cpu').unsqueeze(0), None)
78
  probs = F.softmax(logits, dim=1)
79
  prediction = torch.argmax(probs.cpu(), dim=1)
80
 
 
106
  model = DetectorModelOwl("google/owlv2-base-patch16-ensemble", dropout=0.0)
107
  model.load_state_dict(torch.load("far5y1y5-8000.pt", map_location="cpu"))
108
  model.eval()
 
109
 
110
  # Load YOLO model
111
  yolo_model = YOLO("yolo11x-train28-best.pt")