DAI_Water_Meter / app.py
falba's picture
Update app.py
b049d04 verified
raw
history blame
2.61 kB
import gradio as gr
from ultralytics import YOLO
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from qreader import QReader
import cv2
import json
import ast
from datetime import datetime
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-stage1")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-stage1")
qreader = QReader()
def yolo_and_trocr(image_input, save):
try:
# YOLO instanciated from the trained model
yolo = YOLO('best.pt')
# Creating results
results = yolo(image_input, conf=0.5, iou=0.7)
res = results[0].plot()[:, :, [2,1,0]]
boxes = results[0].boxes.xyxy
image = Image.fromarray(res)
texts = []
# Texts and cropped images get saved in the lists.
for i in boxes:
img_cropped = image.crop(tuple(i.tolist()))
# TrOCR model is run to detect text in image
pixel_values = processor(img_cropped, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
texts.append(generated_text)
text = texts[0]
text = f"{text[:5]}.{text[5:]}" # fix decimals
# Reading the QR code from the image
qr_code = cv2.cvtColor(cv2.imread(image_input), cv2.COLOR_BGR2RGB)
decoded_text = qreader.detect_and_decode(image=qr_code)
if len(decoded_text) == 0:
decoded_text = "No QR code detected"
else:
decoded_text = decoded_text[0]
# Saving the info in a dictionary
if save:
data_dict = ast.literal_eval(decoded_text)
file_path = f"{data_dict['Address']}.json"
with open(file_path, "w") as file:
current_datetime = datetime.now()
timestamp = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
data_dict['Last_Reading'] = {f'{timestamp}': f'{text}'}
return image, text, decoded_text, file_path
else:
return image, text, decoded_text, None
except Exception as e:
return "", f"Your input is invalid: {str(e)}", f"Try Again: Make sure the meter and QR code are clearly captured"
app = gr.Interface(
fn=yolo_and_trocr,
inputs=[gr.File(label="Input: Water Meter Image"),
gr.Checkbox(label="Save")],
outputs=[gr.Image(label='Output: Water Meter Photo'),
gr.Textbox(label="Output: Water Meter Reading"),
gr.Textbox(label="Output: QR Code Detection"),
gr.File(label="Output: Saved Data")],
title="Water Meter Reading with YOLO and OCR"
)
app.launch()