Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
2 |
+
from datasets import load_dataset
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
eval = load_dataset("Marxulia/asl_sign_languages_alphabets_v02", split="train")
|
6 |
+
eval = eval.rename_column('label', 'labels')
|
7 |
+
id2label = {str(i): lab for i, lab in enumerate(eval.features["labels"].names)}
|
8 |
+
|
9 |
+
trained_model = ViTForImageClassification.from_pretrained("falba/google-vit-base-ASL")
|
10 |
+
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
|
11 |
+
|
12 |
+
|
13 |
+
with gr.Blocks() as demo:
|
14 |
+
gallery = gr.Gallery([i for i in eval['image']])
|
15 |
+
statement = gr.Label()
|
16 |
+
|
17 |
+
def on_select(evt: gr.SelectData): # SelectData is a subclass of EventData
|
18 |
+
chosen_index = evt.index
|
19 |
+
chosen_image = eval['image'][chosen_index]
|
20 |
+
inputs = processor(images=chosen_image, return_tensors="pt")
|
21 |
+
outputs = trained_model(**inputs)
|
22 |
+
predicted_label_id = outputs.logits.argmax(-1).item()
|
23 |
+
predicted_label = id2label[str(predicted_label_id)]
|
24 |
+
actual_label = eval['labels'][chosen_index]
|
25 |
+
return f"Actual Label: {id2label[str(actual_label)]} | Predicted label: {predicted_label}"
|
26 |
+
|
27 |
+
gallery.select(on_select, None, statement)
|
28 |
+
|
29 |
+
demo.launch()
|