animagine / app.py
Linaqruf's picture
publish animagine xl 2.0
8c37893
raw
history blame
29.1 kB
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gc
import toml
import gradio as gr
import numpy as np
import utils
import torch
import json
import PIL.Image
import base64
import safetensors
from io import BytesIO
from typing import Tuple
import gradio_user_history as gr_user_history
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
from lora_diffusers import LoRANetwork, create_network_from_weights
from diffusers.models import AutoencoderKL
from diffusers import (
LCMScheduler,
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler,
)
DESCRIPTION = "Animagine XL 2.0"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
ENABLE_REFINER_PROMPT = os.getenv("ENABLE_REFINER_PROMPT") == "1"
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
MODEL = os.getenv("MODEL", "Linaqruf/animagine-xl-2.0")
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
if ENABLE_REFINER_PROMPT:
tokenizer = AutoTokenizer.from_pretrained("isek-ai/SDPrompt-RetNet-300M")
tuner = AutoModelForCausalLM.from_pretrained(
"isek-ai/SDPrompt-RetNet-300M",
trust_remote_code=True,
).to(device)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL,
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
use_auth_token=HF_TOKEN,
variant="fp16",
)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
else:
pipe = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def get_image_path(base_path: str):
extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif"]
for ext in extensions:
image_path = base_path + ext
if os.path.exists(image_path):
return image_path
return None
def update_lcm_parameter(enable_lcm: bool = False):
if enable_lcm:
return (2, 8, gr.update(value="LCM"), gr.update(choices=["LCM"]))
else:
return (12, 50, gr.update(value="Euler a"), gr.update(choices=sampler_list))
def update_selection(selected_state: gr.SelectData):
lora_repo = sdxl_loras[selected_state.index]["repo"]
lora_weight = sdxl_loras[selected_state.index]["multiplier"]
updated_selected_info = f"{lora_repo}"
return (
updated_selected_info,
selected_state,
lora_weight,
)
def parse_aspect_ratio(aspect_ratio):
if aspect_ratio == "Custom":
return None, None
width, height = aspect_ratio.split(" x ")
return int(width), int(height)
def aspect_ratio_handler(aspect_ratio, custom_width, custom_height):
if aspect_ratio == "Custom":
return custom_width, custom_height
else:
width, height = parse_aspect_ratio(aspect_ratio)
return width, height
def create_network(text_encoders, unet, state_dict, multiplier, device):
network = create_network_from_weights(
text_encoders,
unet,
state_dict,
multiplier,
)
network.load_state_dict(state_dict)
network.to(device, dtype=unet.dtype)
network.apply_to(multiplier=multiplier)
return network
def get_scheduler(scheduler_config, name):
scheduler_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
scheduler_config
),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
"LCM": lambda: LCMScheduler.from_config(scheduler_config),
}
return scheduler_map.get(name, lambda: None)()
def free_memory():
torch.cuda.empty_cache()
gc.collect()
def preprocess_prompt(
style_dict,
style_name: str,
positive: str,
negative: str = "",
) -> Tuple[str, str]:
p, n = style_dict.get(style_name, styles["(None)"])
return p.format(prompt=positive), n + negative
def common_upscale(samples, width, height, upscale_method):
return torch.nn.functional.interpolate(
samples, size=(height, width), mode=upscale_method
)
def upscale(samples, upscale_method, scale_by):
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = common_upscale(samples, width, height, upscale_method)
return s
def prompt_completion(
input_text,
max_new_tokens=128,
do_sample=True,
temperature=1.0,
top_p=0.95,
top_k=20,
repetition_penalty=1.2,
num_beams=1,
):
try:
if input_text.strip() == "":
return ""
inputs = tokenizer(
f"<s>{input_text}", return_tensors="pt", add_special_tokens=False
)["input_ids"].to(device)
result = tuner.generate(
inputs,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
num_beams=num_beams,
)
return tokenizer.batch_decode(result, skip_special_tokens=True)[0]
except Exception as e:
print(f"An error occured: {e}")
raise
finally:
free_memory()
def load_and_convert_thumbnail(model_path: str):
with safetensors.safe_open(model_path, framework="pt") as f:
metadata = f.metadata()
if "modelspec.thumbnail" in metadata:
base64_data = metadata["modelspec.thumbnail"]
prefix, encoded = base64_data.split(",", 1)
image_data = base64.b64decode(encoded)
image = PIL.Image.open(BytesIO(image_data))
return image
return None
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 12.0,
num_inference_steps: int = 50,
use_lora: bool = False,
lora_weight: float = 1.0,
selected_state: str = "",
enable_lcm: bool = False,
sampler: str = "Euler a",
aspect_ratio_selector: str = "1024 x 1024",
style_selector: str = "(None)",
quality_selector: str = "Standard",
use_upscaler: bool = False,
upscaler_strength: float = 0.5,
upscale_by: float = 1.5,
refine_prompt: bool = False,
profile: gr.OAuthProfile | None = None,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
generator = seed_everything(seed)
network = None
network_state = {"current_lora": None, "multiplier": None}
adapter_id = "Linaqruf/lcm-lora-sdxl-rank1"
width, height = aspect_ratio_handler(
aspect_ratio_selector,
custom_width,
custom_height,
)
if ENABLE_REFINER_PROMPT:
if refine_prompt:
if not prompt:
prompt = random.choice(["1girl, solo", "1boy, solo"])
prompt = prompt_completion(prompt)
prompt, negative_prompt = preprocess_prompt(
quality_prompt, quality_selector, prompt, negative_prompt
)
prompt, negative_prompt = preprocess_prompt(
styles, style_selector, prompt, negative_prompt
)
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
if use_lora:
if not selected_state:
raise Exception("You must Select a LoRA")
repo_name = sdxl_loras[selected_state.index]["repo"]
full_path_lora = saved_names[selected_state.index]
weight_name = sdxl_loras[selected_state.index]["weights"]
lora_sd = load_file(full_path_lora)
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
if network_state["current_lora"] != repo_name:
network = create_network(
text_encoders,
pipe.unet,
lora_sd,
lora_weight,
device,
)
network_state["current_lora"] = repo_name
network_state["multiplier"] = lora_weight
elif network_state["multiplier"] != lora_weight:
network = create_network(
text_encoders,
pipe.unet,
lora_sd,
lora_weight,
device,
)
network_state["multiplier"] = lora_weight
else:
if network:
network.unapply_to()
network = None
network_state = {
"current_lora": None,
"multiplier": None,
}
if enable_lcm:
pipe.load_lora_weights(adapter_id)
backup_scheduler = pipe.scheduler
pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler)
if use_upscaler:
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"seed": seed,
"sampler": sampler,
"enable_lcm": enable_lcm,
"sdxl_style": style_selector,
"quality_tags": quality_selector,
"refine_prompt": refine_prompt,
}
if use_lora:
metadata["use_lora"] = {"selected_lora": repo_name, "multiplier": lora_weight}
else:
metadata["use_lora"] = None
if use_upscaler:
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
metadata["use_upscaler"] = {
"upscale_method": "nearest-exact",
"upscaler_strength": upscaler_strength,
"upscale_by": upscale_by,
"new_resolution": f"{new_width} x {new_height}",
}
else:
metadata["use_upscaler"] = None
print(json.dumps(metadata, indent=4))
try:
if use_upscaler:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
).images
upscaled_latents = upscale(latents, "nearest-exact", upscale_by)
image = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=upscaler_strength,
generator=generator,
output_type="pil",
).images[0]
else:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images[0]
if network:
network.unapply_to()
network = None
if profile is not None:
gr_user_history.save_image(
label=prompt,
image=image,
profile=profile,
metadata=metadata,
)
return image, metadata
except Exception as e:
print(f"An error occured: {e}")
raise
finally:
if network:
network.unapply_to()
network = None
if use_lora:
del lora_sd, text_encoders
if enable_lcm:
pipe.unload_lora_weights()
if use_upscaler:
del upscaler_pipe
pipe.scheduler = backup_scheduler
free_memory()
examples = [
"face focus, cute, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck",
"face focus, bishounen, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck",
"face focus, fu xuan, 1girl, solo, yellow eyes, dress, looking at viewer, hair rings, bare shoulders, long hair, hair ornament, purple hair, bangs, forehead jewel, frills, tassel, jewelry, pink hair",
"face focus, bishounen, 1boy, zhongli, looking at viewer, upper body, outdoors, night",
"a girl with mesmerizing blue eyes peers at the viewer. Her long, white hair flows gracefully, adorned with stunning blue butterfly hair ornaments",
]
quality_prompt_list = [
{
"name": "(None)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Standard",
"prompt": "masterpiece, best quality, {prompt}",
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
},
{
"name": "Light",
"prompt": "(masterpiece), best quality, expressive eyes, perfect face, {prompt}",
"negative_prompt": "(low quality, worst quality:1.2), 3d, watermark, signature, ugly, poorly drawn",
},
{
"name": "Heavy",
"prompt": "(masterpiece), (best quality), (ultra-detailed), {prompt}, illustration, disheveled hair, detailed eyes, perfect composition, moist skin, intricate details, earrings",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality",
},
]
sampler_list = [
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DPM++ 2M SDE Karras",
"Euler",
"Euler a",
"DDIM",
]
aspect_ratios = [
"1024 x 1024",
"1152 x 896",
"896 x 1152",
"1216 x 832",
"832 x 1216",
"1344 x 768",
"768 x 1344",
"1536 x 640",
"640 x 1536",
"Custom",
]
style_list = [
{
"name": "(None)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
thumbnail_cache = {}
with open("lora.toml", "r") as file:
data = toml.load(file)
sdxl_loras = []
saved_names = []
for item in data["data"]:
model_path = hf_hub_download(item["repo"], item["weights"], token=HF_TOKEN)
saved_names.append(model_path) # Store the path in saved_names
if model_path not in thumbnail_cache:
thumbnail_image = load_and_convert_thumbnail(model_path)
thumbnail_cache[model_path] = thumbnail_image
else:
thumbnail_image = thumbnail_cache[model_path]
sdxl_loras.append(
{
"image": thumbnail_image, # Storing the PIL image object
"title": item["title"],
"repo": item["repo"],
"weights": item["weights"],
"multiplier": item.get("multiplier", "1.0"),
}
)
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
quality_prompt = {
k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list
}
# saved_names = [
# hf_hub_download(item["repo"], item["weights"], token=HF_TOKEN)
# for item in sdxl_loras
# ]
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
title = gr.HTML(
f"""<h1><span>{DESCRIPTION}</span></h1>""",
elem_id="title",
)
gr.Markdown(
f"""Gradio demo for [Linaqruf/animagine-xl-2.0](https://huggingface.co/Linaqruf/animagine-xl-2.0)""",
elem_id="subtitle",
)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
selected_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
with gr.Tab("Txt2img"):
with gr.Group():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Enter your prompt",
)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Enter a negative prompt",
)
with gr.Accordion(label="Quality Prompt Presets", open=False):
quality_selector = gr.Dropdown(
label="Quality Prompt Presets",
show_label=False,
interactive=True,
choices=list(quality_prompt.keys()),
value="Standard",
)
with gr.Row():
enable_lcm = gr.Checkbox(label="Enable LCM", value=False)
use_lora = gr.Checkbox(label="Use LoRA", value=False)
refine_prompt = gr.Checkbox(
label="Refine prompt",
value=False,
visible=ENABLE_REFINER_PROMPT,
)
with gr.Group(visible=False) as lora_group:
selector_info = gr.Text(
label="Selected LoRA",
max_lines=1,
value="No LoRA selected.",
)
lora_selection = gr.Gallery(
value=[(item["image"], item["title"]) for item in sdxl_loras],
label="Animagine XL 2.0 LoRA",
show_label=False,
columns=2,
show_share_button=False,
)
lora_weight = gr.Slider(
label="Multiplier",
minimum=-2,
maximum=2,
step=0.05,
value=1,
)
with gr.Tab("Advanced Settings"):
with gr.Group():
style_selector = gr.Radio(
label="Style Preset",
container=True,
interactive=True,
choices=list(styles.keys()),
value="(None)",
)
with gr.Group():
aspect_ratio_selector = gr.Radio(
label="Aspect Ratio",
choices=aspect_ratios,
value="1024 x 1024",
container=True,
)
with gr.Group():
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
with gr.Row() as upscaler_row:
upscaler_strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
visible=False,
)
upscale_by = gr.Slider(
label="Upscale by",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
visible=False,
)
with gr.Group(visible=False) as custom_resolution:
with gr.Row():
custom_width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
custom_height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
with gr.Group():
sampler = gr.Dropdown(
label="Sampler",
choices=sampler_list,
interactive=True,
value="Euler a",
)
with gr.Group():
seed = gr.Slider(
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=12.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
with gr.Tab("Past Generation"):
gr_user_history.render()
with gr.Column(scale=3):
with gr.Blocks():
run_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion(label="Generation Parameters", open=False):
gr_metadata = gr.JSON(label="Metadata", show_label=False)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, gr_metadata],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
lora_selection.select(
update_selection,
outputs=[
selector_info,
selected_state,
lora_weight,
],
queue=False,
show_progress=False,
)
enable_lcm.change(
update_lcm_parameter,
inputs=enable_lcm,
outputs=[
guidance_scale,
num_inference_steps,
sampler,
sampler,
],
queue=False,
api_name=False,
)
use_lora.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora,
outputs=lora_group,
queue=False,
api_name=False,
)
use_upscaler.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_upscaler,
outputs=[upscaler_strength, upscale_by],
queue=False,
api_name=False,
)
aspect_ratio_selector.change(
fn=lambda x: gr.update(visible=x == "Custom"),
inputs=aspect_ratio_selector,
outputs=custom_resolution,
queue=False,
api_name=False,
)
inputs = [
prompt,
negative_prompt,
seed,
custom_width,
custom_height,
guidance_scale,
num_inference_steps,
use_lora,
lora_weight,
selected_state,
enable_lcm,
sampler,
aspect_ratio_selector,
style_selector,
quality_selector,
use_upscaler,
upscaler_strength,
upscale_by,
refine_prompt,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=[result, gr_metadata],
api_name=False,
)
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)