AshwinSankar commited on
Commit
6e09c19
·
1 Parent(s): 7f3b5bd

added demo

Browse files
Files changed (3) hide show
  1. README.md +6 -6
  2. app.py +425 -0
  3. requirements.txt +2 -0
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- title: Indic Parler Tts
3
- emoji: 👀
4
- colorFrom: gray
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 5.7.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
- short_description: A demo of Indic Parler-TTS
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Parler-TTS Streaming
3
+ emoji: 📝
4
+ colorFrom: red
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 4.31.5
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
+ short_description: High-fidelity Text-To-Speech
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import math
4
+ from queue import Queue
5
+ from threading import Thread
6
+ from typing import Optional
7
+
8
+ import numpy as np
9
+ import spaces
10
+ import gradio as gr
11
+ import torch
12
+
13
+ from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
14
+ from pydub import AudioSegment
15
+ from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
16
+
17
+ device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
18
+ torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
19
+
20
+ repo_id = "ai4bharat/indic-parler-tts-pretrained"
21
+ jenny_repo_id = "ai4bharat/indic-parler-tts"
22
+
23
+ model = ParlerTTSForConditionalGeneration.from_pretrained(
24
+ repo_id, attn_implementation="eager", torch_dtype=torch_dtype, low_cpu_mem_usage=True
25
+ ).to(device)
26
+ jenny_model = ParlerTTSForConditionalGeneration.from_pretrained(
27
+ jenny_repo_id, attn_implementation="eager", torch_dtype=torch_dtype, low_cpu_mem_usage=True
28
+ ).to(device)
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
31
+ description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
32
+ feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
33
+
34
+ SAMPLE_RATE = feature_extractor.sampling_rate
35
+ SEED = 42
36
+
37
+ default_text = "Please surprise me and speak in whatever voice you enjoy."
38
+ examples = [
39
+ [
40
+ "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
41
+ "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
42
+ 3.0
43
+ ],
44
+ [
45
+ "ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.",
46
+ "Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
47
+ 3.0
48
+ ],
49
+ [
50
+ "বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।",
51
+ "Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
52
+ 3.0
53
+ ],
54
+ [
55
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
56
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
57
+ 3.0
58
+ ],
59
+ [
60
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
61
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
62
+ 3.0
63
+ ],
64
+ [
65
+ "This is the best time of my life, Bartley,' she said happily",
66
+ "A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.",
67
+ 3.0
68
+ ],
69
+ [
70
+ "Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
71
+ "A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.",
72
+ 3.0
73
+ ],
74
+ [
75
+ "बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।",
76
+ "Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
77
+ 3.0
78
+ ],
79
+ [
80
+ "കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.",
81
+ "Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
82
+ 3.0
83
+ ],
84
+ [
85
+ "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
86
+ "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
87
+ 3.0
88
+ ]
89
+ ]
90
+
91
+
92
+ jenny_examples = [
93
+ [
94
+ "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
95
+ "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
96
+ 3.0
97
+ ],
98
+ [
99
+ "ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.",
100
+ "Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
101
+ 3.0
102
+ ],
103
+ [
104
+ "বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।",
105
+ "Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
106
+ 3.0
107
+ ],
108
+ [
109
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
110
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
111
+ 3.0
112
+ ],
113
+ [
114
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
115
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
116
+ 3.0
117
+ ],
118
+ [
119
+ "This is the best time of my life, Bartley,' she said happily",
120
+ "A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.",
121
+ 3.0
122
+ ],
123
+ [
124
+ "Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
125
+ "A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.",
126
+ 3.0
127
+ ],
128
+ [
129
+ "बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।",
130
+ "Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
131
+ 3.0
132
+ ],
133
+ [
134
+ "കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.",
135
+ "Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
136
+ 3.0
137
+ ],
138
+ [
139
+ "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
140
+ "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
141
+ 3.0
142
+ ]
143
+ ]
144
+
145
+
146
+ def numpy_to_mp3(audio_array, sampling_rate):
147
+ # Normalize audio_array if it's floating-point
148
+ if np.issubdtype(audio_array.dtype, np.floating):
149
+ max_val = np.max(np.abs(audio_array))
150
+ audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
151
+ audio_array = audio_array.astype(np.int16)
152
+
153
+ # Create an audio segment from the numpy array
154
+ audio_segment = AudioSegment(
155
+ audio_array.tobytes(),
156
+ frame_rate=sampling_rate,
157
+ sample_width=audio_array.dtype.itemsize,
158
+ channels=1
159
+ )
160
+
161
+ # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
162
+ mp3_io = io.BytesIO()
163
+ audio_segment.export(mp3_io, format="mp3", bitrate="320k")
164
+
165
+ # Get the MP3 bytes
166
+ mp3_bytes = mp3_io.getvalue()
167
+ mp3_io.close()
168
+
169
+ return mp3_bytes
170
+
171
+ sampling_rate = model.audio_encoder.config.sampling_rate
172
+ frame_rate = model.audio_encoder.config.frame_rate
173
+
174
+ # @spaces.GPU
175
+ # def generate_base(text, description, play_steps_in_s=2.0):
176
+ # play_steps = int(frame_rate * play_steps_in_s)
177
+ # streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
178
+
179
+ # inputs = description_tokenizer(description, return_tensors="pt").to(device)
180
+ # prompt = tokenizer(text, return_tensors="pt").to(device)
181
+
182
+ # generation_kwargs = dict(
183
+ # input_ids=inputs.input_ids,
184
+ # prompt_input_ids=prompt.input_ids,
185
+ # streamer=streamer,
186
+ # do_sample=True,
187
+ # temperature=1.0,
188
+ # min_new_tokens=10,
189
+ # )
190
+
191
+ # set_seed(SEED)
192
+ # thread = Thread(target=model.generate, kwargs=generation_kwargs)
193
+ # thread.start()
194
+
195
+ # for new_audio in streamer:
196
+ # print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
197
+ # yield numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
198
+
199
+ @spaces.GPU
200
+ def generate_base(text, description, play_steps_in_s=2.0):
201
+ # Initialize variables
202
+ play_steps = int(frame_rate * play_steps_in_s)
203
+ chunk_size = 10 # Process 10 words at a time
204
+
205
+ # Tokenize the full text and description
206
+ inputs = description_tokenizer(description, return_tensors="pt").to(device)
207
+
208
+ # Split text into chunks of approximately 10 words
209
+ words = text.split()
210
+ chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
211
+
212
+ all_audio = []
213
+
214
+ # Process each chunk
215
+ for chunk in chunks:
216
+ # Tokenize the chunk
217
+ prompt = tokenizer(chunk, return_tensors="pt").to(device)
218
+
219
+ # Generate audio for the chunk
220
+ generation = model.generate(
221
+ input_ids=inputs.input_ids,
222
+ attention_mask=inputs.attention_mask,
223
+ prompt_input_ids=prompt.input_ids,
224
+ prompt_attention_mask=prompt.attention_mask,
225
+ do_sample=True,
226
+ # temperature=1.0,
227
+ # min_new_tokens=10,
228
+ return_dict_in_generate=True
229
+ )
230
+
231
+ # Extract audio from generation
232
+ if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
233
+ audio = generation.sequences[0, :generation.audios_length[0]]
234
+ audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
235
+ if len(audio_np.shape) > 1:
236
+ audio_np = audio_np.flatten()
237
+ all_audio.append(audio_np)
238
+
239
+ # Combine all audio chunks
240
+ combined_audio = np.concatenate(all_audio)
241
+
242
+ # Convert to expected format and yield
243
+ print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
244
+ yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
245
+
246
+ # @spaces.GPU
247
+ # def generate_jenny(text, description, play_steps_in_s=2.0):
248
+ # play_steps = int(frame_rate * play_steps_in_s)
249
+ # streamer = ParlerTTSStreamer(jenny_model, device=device, play_steps=play_steps)
250
+
251
+ # inputs = description_tokenizer(description, return_tensors="pt").to(device)
252
+ # prompt = tokenizer(text, return_tensors="pt").to(device)
253
+
254
+ # generation_kwargs = dict(
255
+ # input_ids=inputs.input_ids,
256
+ # prompt_input_ids=prompt.input_ids,
257
+ # streamer=streamer,
258
+ # do_sample=True,
259
+ # temperature=1.0,
260
+ # min_new_tokens=10,
261
+ # )
262
+
263
+ # set_seed(SEED)
264
+ # thread = Thread(target=jenny_model.generate, kwargs=generation_kwargs)
265
+ # thread.start()
266
+
267
+ # for new_audio in streamer:
268
+ # print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
269
+ # yield sampling_rate, new_audio
270
+
271
+ @spaces.GPU
272
+ def generate_jenny(text, description, play_steps_in_s=2.0):
273
+ # Initialize variables
274
+ play_steps = int(frame_rate * play_steps_in_s)
275
+ chunk_size = 10 # Process 10 words at a time
276
+
277
+ # Tokenize the full text and description
278
+ inputs = description_tokenizer(description, return_tensors="pt").to(device)
279
+
280
+ # Split text into chunks of approximately 10 words
281
+ words = text.split()
282
+ chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
283
+
284
+ all_audio = []
285
+
286
+ # Process each chunk
287
+ for chunk in chunks:
288
+ # Tokenize the chunk
289
+ prompt = tokenizer(chunk, return_tensors="pt").to(device)
290
+
291
+ # Generate audio for the chunk
292
+ generation = jenny_model.generate(
293
+ input_ids=inputs.input_ids,
294
+ attention_mask=inputs.attention_mask,
295
+ prompt_input_ids=prompt.input_ids,
296
+ prompt_attention_mask=prompt.attention_mask,
297
+ do_sample=True,
298
+ # temperature=1.0,
299
+ # min_new_tokens=10,
300
+ return_dict_in_generate=True
301
+ )
302
+
303
+ # Extract audio from generation
304
+ if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
305
+ audio = generation.sequences[0, :generation.audios_length[0]]
306
+ audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
307
+ if len(audio_np.shape) > 1:
308
+ audio_np = audio_np.flatten()
309
+ all_audio.append(audio_np)
310
+
311
+ # Combine all audio chunks
312
+ combined_audio = np.concatenate(all_audio)
313
+
314
+ # Convert to expected format and yield
315
+ print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
316
+ yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
317
+
318
+
319
+ css = """
320
+ #share-btn-container {
321
+ display: flex;
322
+ padding-left: 0.5rem !important;
323
+ padding-right: 0.5rem !important;
324
+ background-color: #000000;
325
+ justify-content: center;
326
+ align-items: center;
327
+ border-radius: 9999px !important;
328
+ width: 13rem;
329
+ margin-top: 10px;
330
+ margin-left: auto;
331
+ flex: unset !important;
332
+ }
333
+ #share-btn {
334
+ all: initial;
335
+ color: #ffffff;
336
+ font-weight: 600;
337
+ cursor: pointer;
338
+ font-family: 'IBM Plex Sans', sans-serif;
339
+ margin-left: 0.5rem !important;
340
+ padding-top: 0.25rem !important;
341
+ padding-bottom: 0.25rem !important;
342
+ right:0;
343
+ }
344
+ #share-btn * {
345
+ all: unset !important;
346
+ }
347
+ #share-btn-container div:nth-child(-n+2){
348
+ width: auto !important;
349
+ min-height: 0px !important;
350
+ }
351
+ #share-btn-container .wrap {
352
+ display: none !important;
353
+ }
354
+ """
355
+ with gr.Blocks(css=css) as block:
356
+ gr.HTML(
357
+ """
358
+ <div style="text-align: center; max-width: 700px; margin: 0 auto;">
359
+ <div
360
+ style="
361
+ display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
362
+ "
363
+ >
364
+ <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
365
+ Parler-TTS 🗣️
366
+ </h1>
367
+ </div>
368
+ </div>
369
+ """
370
+ )
371
+ gr.HTML(
372
+ f"""
373
+ <p><a href="https://github.com/huggingface/IndicParlerTTS">IndicParlerTTS</a> is a training and inference library for high-quality text-to-speech (TTS) models. This demonstration highlights the flexibility of the IndicParlerTTS model, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.</p>
374
+
375
+ <p>Tips for effective usage:
376
+ <ul>
377
+ <li>Use detailed captions to describe the speaker and desired characteristics (e.g., "Aditi speaks in a slightly expressive tone, with clear audio quality and a moderate pace.").</li>
378
+ <li>For best results, reference specific named speakers provided in the model card on the <a href="https://huggingface.co/IndicParlerTTS">model page</a>.</li>
379
+ <li>Include terms like <b>"very clear audio"</b> or <b>"slightly noisy audio"</b> to control the audio quality and background ambiance.</li>
380
+ <li>Punctuation can be used to shape prosody (e.g., commas add pauses for natural phrasing).</li>
381
+ <li>If unsure about what caption to use, you can start with: <b>"The speaker speaks naturally. The recording is very high quality with no background noise."</b></li>
382
+ </ul>
383
+ </p>
384
+ """
385
+ )
386
+
387
+ with gr.Tab("Finetuned"):
388
+ with gr.Row():
389
+ with gr.Column():
390
+ input_text = gr.Textbox(label="Input Text", lines=2, value=jenny_examples[0][0], elem_id="input_text")
391
+ description = gr.Textbox(label="Description", lines=2, value=jenny_examples[0][1], elem_id="input_description")
392
+ play_seconds = gr.Slider(3.0, 7.0, value=jenny_examples[0][2], step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
393
+ run_button = gr.Button("Generate Audio", variant="primary")
394
+ with gr.Column():
395
+ audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True)
396
+
397
+ inputs = [input_text, description, play_seconds]
398
+ outputs = [audio_out]
399
+ gr.Examples(examples=jenny_examples, fn=generate_jenny, inputs=inputs, outputs=outputs, cache_examples=False)
400
+ run_button.click(fn=generate_jenny, inputs=inputs, outputs=outputs, queue=True)
401
+
402
+ with gr.Tab("Pretrained"):
403
+ with gr.Row():
404
+ with gr.Column():
405
+ input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
406
+ description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
407
+ play_seconds = gr.Slider(3.0, 7.0, value=3.0, step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
408
+ run_button = gr.Button("Generate Audio", variant="primary")
409
+ with gr.Column():
410
+ audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True)
411
+
412
+ inputs = [input_text, description, play_seconds]
413
+ outputs = [audio_out]
414
+ gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
415
+ run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
416
+
417
+
418
+ gr.HTML(
419
+ """
420
+ If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the <a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the <a href="https://github.com/huggingface/parler-tts/blob/main/LICENSE">Apache 2.0 license</a>.</p>
421
+ """
422
+ )
423
+
424
+ block.queue()
425
+ block.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ git+https://github.com/huggingface/parler-tts.git
2
+ accelerate