AshwinSankar commited on
Commit
5150d64
·
1 Parent(s): 6134bec

mod chunk 10->15

Browse files
Files changed (2) hide show
  1. .gitignore +0 -0
  2. app.py +3 -3
.gitignore ADDED
File without changes
app.py CHANGED
@@ -14,7 +14,7 @@ from parler_tts import ParlerTTSForConditionalGeneration
14
  from pydub import AudioSegment
15
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
16
 
17
- device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
18
  torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
19
 
20
  repo_id = "ai4bharat/indic-parler-tts-pretrained"
@@ -200,7 +200,7 @@ frame_rate = model.audio_encoder.config.frame_rate
200
  def generate_base(text, description, play_steps_in_s=2.0):
201
  # Initialize variables
202
  play_steps = int(frame_rate * play_steps_in_s)
203
- chunk_size = 10 # Process 10 words at a time
204
 
205
  # Tokenize the full text and description
206
  inputs = description_tokenizer(description, return_tensors="pt").to(device)
@@ -272,7 +272,7 @@ def generate_base(text, description, play_steps_in_s=2.0):
272
  def generate_jenny(text, description, play_steps_in_s=2.0):
273
  # Initialize variables
274
  play_steps = int(frame_rate * play_steps_in_s)
275
- chunk_size = 10 # Process 10 words at a time
276
 
277
  # Tokenize the full text and description
278
  inputs = description_tokenizer(description, return_tensors="pt").to(device)
 
14
  from pydub import AudioSegment
15
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
16
 
17
+ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
18
  torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
19
 
20
  repo_id = "ai4bharat/indic-parler-tts-pretrained"
 
200
  def generate_base(text, description, play_steps_in_s=2.0):
201
  # Initialize variables
202
  play_steps = int(frame_rate * play_steps_in_s)
203
+ chunk_size = 15 # Process 10 words at a time
204
 
205
  # Tokenize the full text and description
206
  inputs = description_tokenizer(description, return_tensors="pt").to(device)
 
272
  def generate_jenny(text, description, play_steps_in_s=2.0):
273
  # Initialize variables
274
  play_steps = int(frame_rate * play_steps_in_s)
275
+ chunk_size = 15 # Process 10 words at a time
276
 
277
  # Tokenize the full text and description
278
  inputs = description_tokenizer(description, return_tensors="pt").to(device)