Soumic
:zap: Ready the app.py for next experiment. Looks ok
9e90264
raw
history blame
13.5 kB
import os
from typing import Any
from huggingface_hub import PyTorchModelHubMixin
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS
from torch.utils.data import DataLoader, Dataset
from torcheval.metrics import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
import torch
from torch import nn
from datasets import load_dataset
black = "\u001b[30m"
red = "\u001b[31m"
green = "\u001b[32m"
yellow = "\u001b[33m"
blue = "\u001b[34m"
magenta = "\u001b[35m"
cyan = "\u001b[36m"
white = "\u001b[37m"
FORWARD = "FORWARD_INPUT"
BACKWARD = "BACKWARD_INPUT"
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
class CommonAttentionLayer(nn.Module):
def __init__(self, hidden_size, *args, **kwargs):
super().__init__(*args, **kwargs)
self.attention_linear = nn.Linear(hidden_size, 1)
pass
def forward(self, hidden_states):
# Apply linear layer
attn_weights = self.attention_linear(hidden_states)
# Apply softmax to get attention scores
attn_weights = torch.softmax(attn_weights, dim=1)
# Apply attention weights to hidden states
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
return context_vector, attn_weights
class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
def forward(self, input, target):
return super().forward(input.squeeze(), target.float())
class MQtlDnaBERT6Classifier(nn.Module, PyTorchModelHubMixin):
def __init__(self,
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
hidden_size=768,
num_classes=1,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.model_name = "MQtlDnaBERT6Classifier"
self.bert_model = bert_model
self.attention = CommonAttentionLayer(hidden_size)
self.classifier = nn.Linear(hidden_size, num_classes)
pass
def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
"""
# torch.Size([128, 1, 512]) --> [128, 512]
input_ids = input_ids.squeeze(dim=1).to(DEVICE)
# torch.Size([16, 1, 512]) --> [16, 512]
attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
"""
bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
last_hidden_state = bert_output.last_hidden_state
context_vector, ignore_attention_weight = self.attention(last_hidden_state)
y = self.classifier(context_vector)
return y
class TorchMetrics:
def __init__(self):
self.binary_accuracy = BinaryAccuracy() #.to(device)
self.binary_auc = BinaryAUROC() # .to(device)
self.binary_f1_score = BinaryF1Score() # .to(device)
self.binary_precision = BinaryPrecision() # .to(device)
self.binary_recall = BinaryRecall() # .to(device)
pass
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
# it looks like the library maintainers changed preds to input, ie, before: preds, now: input
self.binary_accuracy.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_auc.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_f1_score.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_precision.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
pass
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
b_accuracy = self.binary_accuracy.compute()
b_auc = self.binary_auc.compute()
b_f1_score = self.binary_f1_score.compute()
b_precision = self.binary_precision.compute()
b_recall = self.binary_recall.compute()
# timber.info( log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
log(f"{log_prefix}_accuracy", b_accuracy)
log(f"{log_prefix}_auc", b_auc)
log(f"{log_prefix}_f1_score", b_f1_score)
log(f"{log_prefix}_precision", b_precision)
log(f"{log_prefix}_recall", b_recall)
self.binary_accuracy.reset()
self.binary_auc.reset()
self.binary_f1_score.reset()
self.binary_precision.reset()
self.binary_recall.reset()
pass
class MQtlBertClassifierLightningModule(LightningModule):
def __init__(self,
classifier: nn.Module,
criterion=None, # nn.BCEWithLogitsLoss(),
regularization: int = 2, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
l1_lambda=0.001,
l2_wright_decay=0.001,
*args: Any,
**kwargs: Any):
super().__init__(*args, **kwargs)
self.classifier = classifier
self.criterion = criterion
self.train_metrics = TorchMetrics()
self.validate_metrics = TorchMetrics()
self.test_metrics = TorchMetrics()
self.regularization = regularization
self.l1_lambda = l1_lambda
self.l2_weight_decay = l2_wright_decay
pass
def forward(self, x, *args: Any, **kwargs: Any) -> Any:
input_ids: torch.tensor = x["input_ids"]
attention_mask: torch.tensor = x["attention_mask"]
token_type_ids: torch.tensor = x["token_type_ids"]
# print(f"\n{ type(input_ids) = }, {input_ids = }")
# print(f"{ type(attention_mask) = }, { attention_mask = }")
# print(f"{ type(token_type_ids) = }, { token_type_ids = }")
return self.classifier.forward(input_ids, attention_mask, token_type_ids)
def configure_optimizers(self) -> OptimizerLRScheduler:
# Here we add weight decay (L2 regularization) to the optimizer
weight_decay = 0.0
if self.regularization == 2 or self.regularization == 3:
weight_decay = self.l2_weight_decay
return torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=weight_decay) # , weight_decay=0.005)
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on training batch data
x, y = batch
preds = self.forward(x)
loss = self.criterion(preds, y)
if self.regularization == 1 or self.regularization == 3: # apply l1 regularization
l1_norm = sum(p.abs().sum() for p in self.parameters())
loss += self.l1_lambda * l1_norm
self.log("train_loss", loss)
# calculate the scores start
self.train_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
# calculate the scores end
return loss
def on_train_epoch_end(self) -> None:
self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
pass
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on validation batch data
# print(f"debug { batch = }")
x, y = batch
preds = self.forward(x)
loss = 0 # self.criterion(preds, y)
self.log("valid_loss", loss)
# calculate the scores start
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
# calculate the scores end
return loss
def on_validation_epoch_end(self) -> None:
self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
return None
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on validation batch data
x, y = batch
preds = self.forward(x)
loss = self.criterion(preds, y)
self.log("test_loss", loss) # do we need this?
# calculate the scores start
self.test_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
# calculate the scores end
return loss
def on_test_epoch_end(self) -> None:
self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
return None
pass
class DNABERTDataset(Dataset):
def __init__(self, dataset, tokenizer, max_length=512):
self.dataset = dataset
self.bert_tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
sequence = self.dataset[idx]['sequence'] # Fetch the 'sequence' column
label = self.dataset[idx]['label'] # Fetch the 'label' column (or whatever target you use)
# Tokenize the sequence
encoded_sequence: BatchEncoding = self.bert_tokenizer(
sequence,
truncation=True,
padding='max_length',
max_length=self.max_length,
return_tensors='pt'
)
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
return encoded_sequence_squeezed, label
class DNABERTDataModule(LightningDataModule):
def __init__(self, model_name=DNA_BERT_6, batch_size=8):
super().__init__()
self.tokenized_dataset = None
self.dataset = None
self.train_dataset: DNABERTDataset = None
self.validate_dataset: DNABERTDataset = None
self.test_dataset: DNABERTDataset = None
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
self.batch_size = batch_size
def prepare_data(self):
# Download and prepare dataset
self.dataset = load_dataset("fahimfarhan/mqtl-classification-dataset-binned-200")
def setup(self, stage=None):
self.train_dataset = DNABERTDataset(self.dataset['train'], self.tokenizer)
self.validate_dataset = DNABERTDataset(self.dataset['validate'], self.tokenizer)
self.test_dataset = DNABERTDataset(self.dataset['test'], self.tokenizer)
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=15)
def val_dataloader(self):
return DataLoader(self.validate_dataset, batch_size=self.batch_size, num_workers=15)
def test_dataloader(self) -> EVAL_DATALOADERS:
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=15)
# Initialize DataModule
model_name = "zhihan1996/DNABERT-6"
data_module = DNABERTDataModule(model_name=model_name, batch_size=8)
def start_bert(classifier_model, model_save_path, criterion, WINDOW=200, batch_size=4,
dataset_folder_prefix="inputdata/", is_binned=True, is_debug=False, max_epochs=10):
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
model_local_directory = f"my-awesome-model-{WINDOW}"
model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"
file_suffix = ""
if is_binned:
file_suffix = "_binned"
data_module = DNABERTDataModule(batch_size=batch_size)
# classifier_model = classifier_model.to(DEVICE)
classifier_module = MQtlBertClassifierLightningModule(
classifier=classifier_model,
regularization=2, criterion=criterion)
# if os.path.exists(model_save_path):
# classifier_module.load_state_dict(torch.load(model_save_path))
classifier_module = classifier_module # .double()
# Set up training arguments
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy="epoch",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=max_epochs,
logging_dir='./logs',
report_to="none", # Disable reporting to WandB, etc.
)
# Prepare data using the DataModule
data_module.prepare_data()
data_module.setup()
# Initialize Trainer
# trainer = Trainer(
# model=classifier_module,
# args=training_args,
# train_dataset=data_module.tokenized_dataset["train"],
# eval_dataset=data_module.tokenized_dataset["test"],
# )
trainer = Trainer(max_epochs=max_epochs, precision="32")
# Train the model
trainer.fit(model=classifier_module, datamodule=data_module)
trainer.test(model=classifier_module, datamodule=data_module)
torch.save(classifier_module.state_dict(), model_save_path)
# classifier_module.push_to_hub("fahimfarhan/mqtl-classifier-model")
classifier_model.save_pretrained(save_directory=model_local_directory, safe_serialization=False)
# push to the hub
commit_message = f":tada: Push model for window size {WINDOW} from huggingface space"
if is_my_laptop:
commit_message = f":tada: Push model for window size {WINDOW} from zephyrus"
classifier_model.push_to_hub(
repo_id=model_remote_repository,
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
commit_message=commit_message, # f":tada: Push model for window size {WINDOW}"
safe_serialization=False
)
pass
if __name__ == "__main__":
dataset_folder_prefix = "inputdata/"
pytorch_model = MQtlDnaBERT6Classifier()
start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
criterion=ReshapedBCEWithLogitsLoss(), WINDOW=4000, batch_size=4,
dataset_folder_prefix=dataset_folder_prefix, max_epochs=2)
pass