File size: 21,112 Bytes
c334cb2
7bc0339
c334cb2
 
 
 
 
 
 
7bc0339
c334cb2
 
 
 
 
 
7bc0339
08f515b
c334cb2
b3624c4
 
 
c334cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3624c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c334cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc0339
 
 
c334cb2
 
7bc0339
c334cb2
 
7bc0339
 
 
 
 
 
 
 
 
 
 
c334cb2
 
 
 
 
 
 
 
 
 
 
 
 
7bc0339
 
 
 
 
 
 
 
 
 
 
c334cb2
 
 
 
7bc0339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c334cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f515b
 
 
c334cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc0339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c334cb2
 
 
 
09cc1f0
 
 
 
c334cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f515b
b3624c4
 
08f515b
 
b3624c4
 
 
 
 
08f515b
 
09cc1f0
08f515b
 
 
 
 
 
 
c334cb2
 
 
 
 
 
 
 
 
b3624c4
 
 
c334cb2
 
 
 
b3624c4
c334cb2
 
08f515b
 
 
 
 
7bc0339
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import logging
import os
import random
from typing import Any

import numpy as np
import pandas as pd
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
import torch
from torch import nn
from datasets import load_dataset, IterableDataset
from huggingface_hub import PyTorchModelHubMixin

from dotenv import load_dotenv
from huggingface_hub import login

timber = logging.getLogger()
# logging.basicConfig(level=logging.DEBUG)
logging.basicConfig(level=logging.INFO)  # change to level=logging.DEBUG to print more logs...

black = "\u001b[30m"
red = "\u001b[31m"
green = "\u001b[32m"
yellow = "\u001b[33m"
blue = "\u001b[34m"
magenta = "\u001b[35m"
cyan = "\u001b[36m"
white = "\u001b[37m"

FORWARD = "FORWARD_INPUT"
BACKWARD = "BACKWARD_INPUT"

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def login_inside_huggingface_virtualmachine():
  # Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
  try:
    load_dotenv()  # Only useful on your laptop if .env exists
    print(".env file loaded successfully.")
  except Exception as e:
    print(f"Warning: Could not load .env file. Exception: {e}")

  # Try to get the token from environment variables
  try:
    token = os.getenv("HF_TOKEN")

    if not token:
      raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")

    # Log in to Hugging Face Hub
    login(token)
    print("Logged in to Hugging Face Hub successfully.")

  except Exception as e:
    print(f"Error during Hugging Face login: {e}")
    # Handle the error appropriately (e.g., exit or retry)


def one_hot_e(dna_seq: str) -> np.ndarray:
  mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
            'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
            'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]),
            'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]),
            'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]),
            'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])}

  size_of_a_seq: int = len(dna_seq)

  # forward = np.zeros(shape=(size_of_a_seq, 4))

  forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)]
  encoded = np.asarray(forward_list)
  encoded_transposed = encoded.transpose()  # todo: Needs review
  return encoded_transposed


def one_hot_e_column(column: pd.Series) -> np.ndarray:
  tmp_list: list = [one_hot_e(seq) for seq in column]
  encoded_column = np.asarray(tmp_list).astype(np.float32)
  return encoded_column


def reverse_dna_seq(dna_seq: str) -> str:
  # m_reversed = ""
  # for i in range(0, len(dna_seq)):
  #     m_reversed = dna_seq[i] + m_reversed
  # return m_reversed
  return dna_seq[::-1]


def complement_dna_seq(dna_seq: str) -> str:
  comp_map = {"A": "T", "C": "G", "T": "A", "G": "C",
              "a": "t", "c": "g", "t": "a", "g": "c",
              "N": "N", "H": "H", "-": "-",
              "n": "n", "h": "h"
              }

  comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq]
  comp_dna_seq: str = "".join(comp_dna_seq_list)
  return comp_dna_seq


def reverse_complement_dna_seq(dna_seq: str) -> str:
  return reverse_dna_seq(complement_dna_seq(dna_seq))


def reverse_complement_column(column: pd.Series) -> np.ndarray:
  rc_column: list = [reverse_complement_dna_seq(seq) for seq in column]
  return rc_column


class TorchMetrics:
  def __init__(self, device=DEVICE):
    self.binary_accuracy = BinaryAccuracy().to(device)
    self.binary_auc = BinaryAUROC().to(device)
    self.binary_f1_score = BinaryF1Score().to(device)
    self.binary_precision = BinaryPrecision().to(device)
    self.binary_recall = BinaryRecall().to(device)
    pass

  def update_on_each_step(self, batch_predicted_labels, batch_actual_labels):  # todo: Add log if needed
    self.binary_accuracy.update(preds=batch_predicted_labels, target=batch_actual_labels)
    self.binary_auc.update(preds=batch_predicted_labels, target=batch_actual_labels)
    self.binary_f1_score.update(preds=batch_predicted_labels, target=batch_actual_labels)
    self.binary_precision.update(preds=batch_predicted_labels, target=batch_actual_labels)
    self.binary_recall.update(preds=batch_predicted_labels, target=batch_actual_labels)
    pass

  def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
    b_accuracy = self.binary_accuracy.compute()
    b_auc = self.binary_auc.compute()
    b_f1_score = self.binary_f1_score.compute()
    b_precision = self.binary_precision.compute()
    b_recall = self.binary_recall.compute()
    timber.info(
      log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
    log(f"{log_prefix}_accuracy", b_accuracy)
    log(f"{log_prefix}_auc", b_auc)
    log(f"{log_prefix}_f1_score", b_f1_score)
    log(f"{log_prefix}_precision", b_precision)
    log(f"{log_prefix}_recall", b_recall)

    self.binary_accuracy.reset()
    self.binary_auc.reset()
    self.binary_f1_score.reset()
    self.binary_precision.reset()
    self.binary_recall.reset()
    pass


def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
  start = 0
  end = len(seq)
  rand_pos = random.randrange(start, (end - len(DEBUG_MOTIF)))
  random_end = rand_pos + len(DEBUG_MOTIF)
  output = seq[start: rand_pos] + DEBUG_MOTIF + seq[random_end: end]
  assert len(seq) == len(output)
  return output


class MQTLDataset(IterableDataset):
  def __init__(self, m_dataset, seq_len, check_if_pipeline_is_ok_by_inserting_debug_motif=False):
    self.dataset = m_dataset
    self.check_if_pipeline_is_ok_by_inserting_debug_motif = check_if_pipeline_is_ok_by_inserting_debug_motif
    self.debug_motif = "ATCGCCTA"
    self.seq_len = seq_len
    pass

  def __iter__(self):
    for row in self.dataset:
      processed = self.preprocess(row)
      if processed is not None:
        yield processed

  def preprocess(self, row):
    seq = row['sequence']  # Fetch the 'sequence' column
    if len(seq) != self.seq_len:
      return None  # skip problematic row!
    label = row['label']  # Fetch the 'label' column (or whatever target you use)
    if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
      seq = insert_debug_motif_at_random_position(seq=seq, DEBUG_MOTIF=self.debug_motif)
    seq_rc = reverse_complement_dna_seq(seq)
    ohe_seq = one_hot_e(dna_seq=seq)
    # print(f"shape fafafa = { ohe_seq.shape = }")
    ohe_seq_rc = one_hot_e(dna_seq=seq_rc)

    label_number = label * 1.0
    label_np_array = np.asarray([label_number]).astype(np.float32)
    # return ohe_seq, ohe_seq_rc, label
    return [ohe_seq, ohe_seq_rc], label_np_array


# def collate_fn(batch):
#   sequences, labels = zip(*batch)
#   ohe_seq, ohe_seq_rc = sequences[0], sequences[1]
#   # Pad sequences to the maximum length in this batch
#   padded_sequences = pad_sequence(ohe_seq, batch_first=True, padding_value=0)
#   padded_sequences_rc = pad_sequence(ohe_seq_rc, batch_first=True, padding_value=0)
#   # Convert labels to a tensor
#   labels = torch.stack(labels)
#   return [padded_sequences, padded_sequences_rc], labels


class MqtlDataModule(LightningDataModule):
  def __init__(self, train_ds: Dataset, val_ds: Dataset, test_ds: Dataset, batch_size=16):
    super().__init__()
    self.batch_size = batch_size
    self.train_loader = DataLoader(train_ds, batch_size=self.batch_size, shuffle=False,
                                   # collate_fn=collate_fn,
                                   num_workers=15,
                                   # persistent_workers=True
                                   )
    self.validate_loader = DataLoader(val_ds, batch_size=self.batch_size, shuffle=False,
                                      # collate_fn=collate_fn,
                                      num_workers=15,
                                      # persistent_workers=True
                                      )
    self.test_loader = DataLoader(test_ds, batch_size=self.batch_size, shuffle=False,
                                  # collate_fn=collate_fn,
                                  num_workers=15,
                                  # persistent_workers=True
                                  )
    pass

  def prepare_data(self):
    pass

  def setup(self, stage: str) -> None:
    timber.info(f"inside setup: {stage = }")
    pass

  def train_dataloader(self) -> TRAIN_DATALOADERS:
    return self.train_loader

  def val_dataloader(self) -> EVAL_DATALOADERS:
    return self.validate_loader

  def test_dataloader(self) -> EVAL_DATALOADERS:
    return self.test_loader


class MQtlClassifierLightningModule(LightningModule):
  def __init__(self,
               classifier: nn.Module,
               criterion=nn.BCELoss(),  # nn.BCEWithLogitsLoss(),
               regularization: int = 2,  # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
               l1_lambda=0.001,
               l2_wright_decay=0.001,
               m_optimizer=torch.optim.Adam,
               *args: Any,
               **kwargs: Any):
    super().__init__(*args, **kwargs)
    self.classifier = classifier
    self.criterion = criterion
    self.train_metrics = TorchMetrics()
    self.validate_metrics = TorchMetrics()
    self.test_metrics = TorchMetrics()

    self.regularization = regularization
    self.l1_lambda = l1_lambda
    self.l2_weight_decay = l2_wright_decay
    self.m_optimizer = m_optimizer
    pass

  def forward(self, x, *args: Any, **kwargs: Any) -> Any:
    return self.classifier.forward(x)

  def configure_optimizers(self) -> OptimizerLRScheduler:
    # Here we add weight decay (L2 regularization) to the optimizer
    weight_decay = 0.0
    if self.regularization == 2 or self.regularization == 3:
      weight_decay = self.l2_weight_decay
    return self.m_optimizer(self.parameters(), lr=1e-3, weight_decay=weight_decay)  # , weight_decay=0.005)

  def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
    # Accuracy on training batch data
    x, y = batch
    x = [i.float() for i in x]
    preds = self.forward(x)
    loss = self.criterion(preds, y)

    if self.regularization == 1 or self.regularization == 3:  # apply l1 regularization
      l1_norm = sum(p.abs().sum() for p in self.parameters())
      loss += self.l1_lambda * l1_norm

    self.log("train_loss", loss)
    # calculate the scores start
    self.train_metrics.update_on_each_step(batch_predicted_labels=preds, batch_actual_labels=y)
    # calculate the scores end
    return loss

  def on_train_epoch_end(self) -> None:
    timber.info(green + "on_train_epoch_end")
    self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
    pass

  def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
    # Accuracy on validation batch data
    x, y = batch
    x = [i.float() for i in x]

    preds = self.forward(x)
    loss = self.criterion(preds, y)
    self.log("valid_loss", loss)
    # calculate the scores start
    self.validate_metrics.update_on_each_step(batch_predicted_labels=preds, batch_actual_labels=y)
    # calculate the scores end
    return loss

  def on_validation_epoch_end(self) -> None:
    timber.info(blue + "on_validation_epoch_end")
    self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
    return None

  def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
    # Accuracy on validation batch data
    x, y = batch
    x = [i.float() for i in x]

    preds = self.forward(x)
    loss = self.criterion(preds, y)
    self.log("test_loss", loss)  # do we need this?
    # calculate the scores start
    self.test_metrics.update_on_each_step(batch_predicted_labels=preds, batch_actual_labels=y)
    # calculate the scores end
    return loss

  def on_test_epoch_end(self) -> None:
    timber.info(magenta + "on_test_epoch_end")
    self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
    return None

  pass


# Some more util functions!
def create_conv_sequence(in_channel_num_of_nucleotides, num_filters, kernel_size_k_mer_motif) -> nn.Sequential:
  conv1d = nn.Conv1d(in_channels=in_channel_num_of_nucleotides, out_channels=num_filters,
                     kernel_size=kernel_size_k_mer_motif,
                     padding="same")  # stride = 2, just dont use stride, keep it simple for now
  activation = nn.ReLU(inplace=False)  # (inplace=True) will fess with interpretability
  pooling = nn.MaxPool1d(
    kernel_size=kernel_size_k_mer_motif)  # stride = 2, just dont use stride, keep it simple for now

  return nn.Sequential(conv1d, activation, pooling)


class Cnn1dClassifier(nn.Module,
                      PyTorchModelHubMixin
                      ):
  def __init__(self,
               seq_len,
               in_channel_num_of_nucleotides=4,
               kernel_size_k_mer_motif=4,
               num_filters=32,
               lstm_hidden_size=128,
               dnn_size=128,
               conv_seq_list_size=3,
               *args, **kwargs):
    super().__init__(*args, **kwargs)
    self.file_name = f"weights_Cnn1dClassifier_seqlen_{seq_len}.pth"

    self.seq_layer_forward = create_conv_sequence(in_channel_num_of_nucleotides, num_filters,
                                                  kernel_size_k_mer_motif)
    self.seq_layer_backward = create_conv_sequence(in_channel_num_of_nucleotides, num_filters,
                                                   kernel_size_k_mer_motif)

    self.flatten = nn.Flatten()

    dnn_in_features = int(num_filters * (seq_len * 2) / kernel_size_k_mer_motif)  # no idea why
    # two because forward_sequence,and backward_sequence
    self.dnn = nn.Linear(in_features=dnn_in_features, out_features=dnn_size)
    self.dnn_activation = nn.ReLU(inplace=False)  # inplace = true messes with interpretability!
    self.dropout = nn.Dropout(p=0.33)

    self.output_layer = nn.Linear(in_features=dnn_size, out_features=1)
    self.output_activation = torch.sigmoid  # not needed if using nn.BCEWithLogitsLoss()

    self.layer_output_logger: dict = {}
    pass

  def forward(self, x):
    xf, xb = x[0], x[1]

    hf = self.seq_layer_forward(xf)
    timber.debug(red + f"1{ hf.shape = }")
    hb = self.seq_layer_backward(xb)
    timber.debug(green + f"2{ hb.shape = }")

    h = torch.concatenate(tensors=(hf, hb), dim=2)
    timber.debug(yellow + f"4{ h.shape = } concat")

    h = self.flatten(h)
    timber.debug(yellow + f"5{ h.shape = } flatten")

    h = self.dnn(h)
    timber.debug(yellow + f"8{ h.shape = } dnn")

    h = self.dnn_activation(h)
    timber.debug(blue + f"9{ h.shape = } dnn_activation")
    h = self.dropout(h)
    timber.debug(blue + f"10{ h.shape = } dropout")
    h = self.output_layer(h)
    timber.debug(blue + f"11{ h.shape = } output_layer")
    h = self.output_activation(h)
    timber.debug(blue + f"12{ h.shape = } output_activation")
    return h


def start(classifier_model, model_save_path, is_attention_model=False, m_optimizer=torch.optim.Adam, WINDOW=200,
          dataset_folder_prefix="inputdata/", is_binned=True, is_debug=False, max_epochs=10):
  # experiment = 'tutorial_3'
  # if not os.path.exists(experiment):
  #   os.makedirs(experiment)
  """
  x_train, x_tmp, y_train, y_tmp = train_test_split(df["sequence"], df["label"], test_size=0.2)
  x_test, x_val, y_test, y_val = train_test_split(x_tmp, y_tmp, test_size=0.5)

  train_dataset = MyDataSet(x_train, y_train)
  val_dataset = MyDataSet(x_val, y_val)
  test_dataset = MyDataSet(x_test, y_test)
  """
  file_suffix = ""
  if is_binned:
    file_suffix = "_binned"

  data_files = {
    # small samples
    "train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
    "validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
    "test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
    # large samples
    "train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
    "validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
    "test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",
  }

  dataset_map = None
  is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv")
  if is_my_laptop:
    dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
  else:
    dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)

  train_dataset = MQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
                              check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
                              seq_len=WINDOW
                              )
  val_dataset = MQTLDataset(dataset_map[f"validate_binned_{WINDOW}"],
                            check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
                            seq_len=WINDOW)
  test_dataset = MQTLDataset(dataset_map[f"test_binned_{WINDOW}"],
                             check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
                             seq_len=WINDOW)

  data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset)

  classifier_model = classifier_model  #.to(DEVICE)
  try:
    classifier_model = classifier_model.from_pretrained(f"my-awesome-model-{WINDOW}")
  except Exception as x:
    print(x)

  classifier_module = MQtlClassifierLightningModule(classifier=classifier_model, regularization=2,
                                                    m_optimizer=m_optimizer)

  # if os.path.exists(model_save_path):
  #   classifier_module.load_state_dict(torch.load(model_save_path))

  classifier_module = classifier_module  # .double()

  trainer = Trainer(max_epochs=max_epochs, precision="32")
  trainer.fit(model=classifier_module, datamodule=data_module)
  timber.info("\n\n")
  trainer.test(model=classifier_module, datamodule=data_module)
  timber.info("\n\n")
  torch.save(classifier_module.state_dict(), model_save_path)

  #  save locally
  model_subdirectory = f"my-awesome-model-{WINDOW}"
  classifier_model.save_pretrained(model_subdirectory)

  # push to the hub
  classifier_model.push_to_hub(
    repo_id="fahimfarhan/mqtl-classifier-model",
    # subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
    commit_message=f":tada: Push model for window size {WINDOW}"
  )

  # reload
  model = classifier_model.from_pretrained(f"my-awesome-model-{WINDOW}")
  # repo_url = "https://huggingface.co/fahimfarhan/mqtl-classifier-model"
  #
  # push_to_hub(
  #   model_file=classifier_model.file_name,  # Replace with your model file path
  #   repo_url=repo_url,
  #   # config_file="config.json"  # Optional, if you have a config file
  # )

  # start_interpreting_ig_and_dl(classifier_model, WINDOW, dataset_folder_prefix=dataset_folder_prefix)
  # start_interpreting_with_dlshap(classifier_model, WINDOW, dataset_folder_prefix=dataset_folder_prefix)
  # if is_attention_model: # todo: repair it later
  #   start_interpreting_attention_failed(classifier_model)
  pass


if __name__ == '__main__':
  login_inside_huggingface_virtualmachine()

  WINDOW = 200
  simple_cnn = Cnn1dClassifier(seq_len=WINDOW)
  simple_cnn.enable_logging = True

  start(classifier_model=simple_cnn, model_save_path=simple_cnn.file_name, WINDOW=WINDOW,
        dataset_folder_prefix="inputdata/", is_debug=True, max_epochs=10)

  pass

"""
lightning_logs/
*.pth
my-awesome-model

INFO:root:validate_acc = 0.5625, validate_auc = 0.5490195751190186, validate_f1_score = 0.30000001192092896, validate_precision = 0.6000000238418579, validate_recall = 0.20000000298023224
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=15` in the `DataLoader` to improve performance.

"""