Spaces:
Runtime error
Runtime error
File size: 21,112 Bytes
c334cb2 7bc0339 c334cb2 7bc0339 c334cb2 7bc0339 08f515b c334cb2 b3624c4 c334cb2 b3624c4 c334cb2 7bc0339 c334cb2 7bc0339 c334cb2 7bc0339 c334cb2 7bc0339 c334cb2 7bc0339 c334cb2 08f515b c334cb2 7bc0339 c334cb2 09cc1f0 c334cb2 08f515b b3624c4 08f515b b3624c4 08f515b 09cc1f0 08f515b c334cb2 b3624c4 c334cb2 b3624c4 c334cb2 08f515b 7bc0339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
import logging
import os
import random
from typing import Any
import numpy as np
import pandas as pd
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
import torch
from torch import nn
from datasets import load_dataset, IterableDataset
from huggingface_hub import PyTorchModelHubMixin
from dotenv import load_dotenv
from huggingface_hub import login
timber = logging.getLogger()
# logging.basicConfig(level=logging.DEBUG)
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
black = "\u001b[30m"
red = "\u001b[31m"
green = "\u001b[32m"
yellow = "\u001b[33m"
blue = "\u001b[34m"
magenta = "\u001b[35m"
cyan = "\u001b[36m"
white = "\u001b[37m"
FORWARD = "FORWARD_INPUT"
BACKWARD = "BACKWARD_INPUT"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def login_inside_huggingface_virtualmachine():
# Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
try:
load_dotenv() # Only useful on your laptop if .env exists
print(".env file loaded successfully.")
except Exception as e:
print(f"Warning: Could not load .env file. Exception: {e}")
# Try to get the token from environment variables
try:
token = os.getenv("HF_TOKEN")
if not token:
raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")
# Log in to Hugging Face Hub
login(token)
print("Logged in to Hugging Face Hub successfully.")
except Exception as e:
print(f"Error during Hugging Face login: {e}")
# Handle the error appropriately (e.g., exit or retry)
def one_hot_e(dna_seq: str) -> np.ndarray:
mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]),
'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]),
'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]),
'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])}
size_of_a_seq: int = len(dna_seq)
# forward = np.zeros(shape=(size_of_a_seq, 4))
forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)]
encoded = np.asarray(forward_list)
encoded_transposed = encoded.transpose() # todo: Needs review
return encoded_transposed
def one_hot_e_column(column: pd.Series) -> np.ndarray:
tmp_list: list = [one_hot_e(seq) for seq in column]
encoded_column = np.asarray(tmp_list).astype(np.float32)
return encoded_column
def reverse_dna_seq(dna_seq: str) -> str:
# m_reversed = ""
# for i in range(0, len(dna_seq)):
# m_reversed = dna_seq[i] + m_reversed
# return m_reversed
return dna_seq[::-1]
def complement_dna_seq(dna_seq: str) -> str:
comp_map = {"A": "T", "C": "G", "T": "A", "G": "C",
"a": "t", "c": "g", "t": "a", "g": "c",
"N": "N", "H": "H", "-": "-",
"n": "n", "h": "h"
}
comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq]
comp_dna_seq: str = "".join(comp_dna_seq_list)
return comp_dna_seq
def reverse_complement_dna_seq(dna_seq: str) -> str:
return reverse_dna_seq(complement_dna_seq(dna_seq))
def reverse_complement_column(column: pd.Series) -> np.ndarray:
rc_column: list = [reverse_complement_dna_seq(seq) for seq in column]
return rc_column
class TorchMetrics:
def __init__(self, device=DEVICE):
self.binary_accuracy = BinaryAccuracy().to(device)
self.binary_auc = BinaryAUROC().to(device)
self.binary_f1_score = BinaryF1Score().to(device)
self.binary_precision = BinaryPrecision().to(device)
self.binary_recall = BinaryRecall().to(device)
pass
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
self.binary_accuracy.update(preds=batch_predicted_labels, target=batch_actual_labels)
self.binary_auc.update(preds=batch_predicted_labels, target=batch_actual_labels)
self.binary_f1_score.update(preds=batch_predicted_labels, target=batch_actual_labels)
self.binary_precision.update(preds=batch_predicted_labels, target=batch_actual_labels)
self.binary_recall.update(preds=batch_predicted_labels, target=batch_actual_labels)
pass
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
b_accuracy = self.binary_accuracy.compute()
b_auc = self.binary_auc.compute()
b_f1_score = self.binary_f1_score.compute()
b_precision = self.binary_precision.compute()
b_recall = self.binary_recall.compute()
timber.info(
log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
log(f"{log_prefix}_accuracy", b_accuracy)
log(f"{log_prefix}_auc", b_auc)
log(f"{log_prefix}_f1_score", b_f1_score)
log(f"{log_prefix}_precision", b_precision)
log(f"{log_prefix}_recall", b_recall)
self.binary_accuracy.reset()
self.binary_auc.reset()
self.binary_f1_score.reset()
self.binary_precision.reset()
self.binary_recall.reset()
pass
def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
start = 0
end = len(seq)
rand_pos = random.randrange(start, (end - len(DEBUG_MOTIF)))
random_end = rand_pos + len(DEBUG_MOTIF)
output = seq[start: rand_pos] + DEBUG_MOTIF + seq[random_end: end]
assert len(seq) == len(output)
return output
class MQTLDataset(IterableDataset):
def __init__(self, m_dataset, seq_len, check_if_pipeline_is_ok_by_inserting_debug_motif=False):
self.dataset = m_dataset
self.check_if_pipeline_is_ok_by_inserting_debug_motif = check_if_pipeline_is_ok_by_inserting_debug_motif
self.debug_motif = "ATCGCCTA"
self.seq_len = seq_len
pass
def __iter__(self):
for row in self.dataset:
processed = self.preprocess(row)
if processed is not None:
yield processed
def preprocess(self, row):
seq = row['sequence'] # Fetch the 'sequence' column
if len(seq) != self.seq_len:
return None # skip problematic row!
label = row['label'] # Fetch the 'label' column (or whatever target you use)
if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
seq = insert_debug_motif_at_random_position(seq=seq, DEBUG_MOTIF=self.debug_motif)
seq_rc = reverse_complement_dna_seq(seq)
ohe_seq = one_hot_e(dna_seq=seq)
# print(f"shape fafafa = { ohe_seq.shape = }")
ohe_seq_rc = one_hot_e(dna_seq=seq_rc)
label_number = label * 1.0
label_np_array = np.asarray([label_number]).astype(np.float32)
# return ohe_seq, ohe_seq_rc, label
return [ohe_seq, ohe_seq_rc], label_np_array
# def collate_fn(batch):
# sequences, labels = zip(*batch)
# ohe_seq, ohe_seq_rc = sequences[0], sequences[1]
# # Pad sequences to the maximum length in this batch
# padded_sequences = pad_sequence(ohe_seq, batch_first=True, padding_value=0)
# padded_sequences_rc = pad_sequence(ohe_seq_rc, batch_first=True, padding_value=0)
# # Convert labels to a tensor
# labels = torch.stack(labels)
# return [padded_sequences, padded_sequences_rc], labels
class MqtlDataModule(LightningDataModule):
def __init__(self, train_ds: Dataset, val_ds: Dataset, test_ds: Dataset, batch_size=16):
super().__init__()
self.batch_size = batch_size
self.train_loader = DataLoader(train_ds, batch_size=self.batch_size, shuffle=False,
# collate_fn=collate_fn,
num_workers=15,
# persistent_workers=True
)
self.validate_loader = DataLoader(val_ds, batch_size=self.batch_size, shuffle=False,
# collate_fn=collate_fn,
num_workers=15,
# persistent_workers=True
)
self.test_loader = DataLoader(test_ds, batch_size=self.batch_size, shuffle=False,
# collate_fn=collate_fn,
num_workers=15,
# persistent_workers=True
)
pass
def prepare_data(self):
pass
def setup(self, stage: str) -> None:
timber.info(f"inside setup: {stage = }")
pass
def train_dataloader(self) -> TRAIN_DATALOADERS:
return self.train_loader
def val_dataloader(self) -> EVAL_DATALOADERS:
return self.validate_loader
def test_dataloader(self) -> EVAL_DATALOADERS:
return self.test_loader
class MQtlClassifierLightningModule(LightningModule):
def __init__(self,
classifier: nn.Module,
criterion=nn.BCELoss(), # nn.BCEWithLogitsLoss(),
regularization: int = 2, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
l1_lambda=0.001,
l2_wright_decay=0.001,
m_optimizer=torch.optim.Adam,
*args: Any,
**kwargs: Any):
super().__init__(*args, **kwargs)
self.classifier = classifier
self.criterion = criterion
self.train_metrics = TorchMetrics()
self.validate_metrics = TorchMetrics()
self.test_metrics = TorchMetrics()
self.regularization = regularization
self.l1_lambda = l1_lambda
self.l2_weight_decay = l2_wright_decay
self.m_optimizer = m_optimizer
pass
def forward(self, x, *args: Any, **kwargs: Any) -> Any:
return self.classifier.forward(x)
def configure_optimizers(self) -> OptimizerLRScheduler:
# Here we add weight decay (L2 regularization) to the optimizer
weight_decay = 0.0
if self.regularization == 2 or self.regularization == 3:
weight_decay = self.l2_weight_decay
return self.m_optimizer(self.parameters(), lr=1e-3, weight_decay=weight_decay) # , weight_decay=0.005)
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on training batch data
x, y = batch
x = [i.float() for i in x]
preds = self.forward(x)
loss = self.criterion(preds, y)
if self.regularization == 1 or self.regularization == 3: # apply l1 regularization
l1_norm = sum(p.abs().sum() for p in self.parameters())
loss += self.l1_lambda * l1_norm
self.log("train_loss", loss)
# calculate the scores start
self.train_metrics.update_on_each_step(batch_predicted_labels=preds, batch_actual_labels=y)
# calculate the scores end
return loss
def on_train_epoch_end(self) -> None:
timber.info(green + "on_train_epoch_end")
self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
pass
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on validation batch data
x, y = batch
x = [i.float() for i in x]
preds = self.forward(x)
loss = self.criterion(preds, y)
self.log("valid_loss", loss)
# calculate the scores start
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds, batch_actual_labels=y)
# calculate the scores end
return loss
def on_validation_epoch_end(self) -> None:
timber.info(blue + "on_validation_epoch_end")
self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
return None
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on validation batch data
x, y = batch
x = [i.float() for i in x]
preds = self.forward(x)
loss = self.criterion(preds, y)
self.log("test_loss", loss) # do we need this?
# calculate the scores start
self.test_metrics.update_on_each_step(batch_predicted_labels=preds, batch_actual_labels=y)
# calculate the scores end
return loss
def on_test_epoch_end(self) -> None:
timber.info(magenta + "on_test_epoch_end")
self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
return None
pass
# Some more util functions!
def create_conv_sequence(in_channel_num_of_nucleotides, num_filters, kernel_size_k_mer_motif) -> nn.Sequential:
conv1d = nn.Conv1d(in_channels=in_channel_num_of_nucleotides, out_channels=num_filters,
kernel_size=kernel_size_k_mer_motif,
padding="same") # stride = 2, just dont use stride, keep it simple for now
activation = nn.ReLU(inplace=False) # (inplace=True) will fess with interpretability
pooling = nn.MaxPool1d(
kernel_size=kernel_size_k_mer_motif) # stride = 2, just dont use stride, keep it simple for now
return nn.Sequential(conv1d, activation, pooling)
class Cnn1dClassifier(nn.Module,
PyTorchModelHubMixin
):
def __init__(self,
seq_len,
in_channel_num_of_nucleotides=4,
kernel_size_k_mer_motif=4,
num_filters=32,
lstm_hidden_size=128,
dnn_size=128,
conv_seq_list_size=3,
*args, **kwargs):
super().__init__(*args, **kwargs)
self.file_name = f"weights_Cnn1dClassifier_seqlen_{seq_len}.pth"
self.seq_layer_forward = create_conv_sequence(in_channel_num_of_nucleotides, num_filters,
kernel_size_k_mer_motif)
self.seq_layer_backward = create_conv_sequence(in_channel_num_of_nucleotides, num_filters,
kernel_size_k_mer_motif)
self.flatten = nn.Flatten()
dnn_in_features = int(num_filters * (seq_len * 2) / kernel_size_k_mer_motif) # no idea why
# two because forward_sequence,and backward_sequence
self.dnn = nn.Linear(in_features=dnn_in_features, out_features=dnn_size)
self.dnn_activation = nn.ReLU(inplace=False) # inplace = true messes with interpretability!
self.dropout = nn.Dropout(p=0.33)
self.output_layer = nn.Linear(in_features=dnn_size, out_features=1)
self.output_activation = torch.sigmoid # not needed if using nn.BCEWithLogitsLoss()
self.layer_output_logger: dict = {}
pass
def forward(self, x):
xf, xb = x[0], x[1]
hf = self.seq_layer_forward(xf)
timber.debug(red + f"1{ hf.shape = }")
hb = self.seq_layer_backward(xb)
timber.debug(green + f"2{ hb.shape = }")
h = torch.concatenate(tensors=(hf, hb), dim=2)
timber.debug(yellow + f"4{ h.shape = } concat")
h = self.flatten(h)
timber.debug(yellow + f"5{ h.shape = } flatten")
h = self.dnn(h)
timber.debug(yellow + f"8{ h.shape = } dnn")
h = self.dnn_activation(h)
timber.debug(blue + f"9{ h.shape = } dnn_activation")
h = self.dropout(h)
timber.debug(blue + f"10{ h.shape = } dropout")
h = self.output_layer(h)
timber.debug(blue + f"11{ h.shape = } output_layer")
h = self.output_activation(h)
timber.debug(blue + f"12{ h.shape = } output_activation")
return h
def start(classifier_model, model_save_path, is_attention_model=False, m_optimizer=torch.optim.Adam, WINDOW=200,
dataset_folder_prefix="inputdata/", is_binned=True, is_debug=False, max_epochs=10):
# experiment = 'tutorial_3'
# if not os.path.exists(experiment):
# os.makedirs(experiment)
"""
x_train, x_tmp, y_train, y_tmp = train_test_split(df["sequence"], df["label"], test_size=0.2)
x_test, x_val, y_test, y_val = train_test_split(x_tmp, y_tmp, test_size=0.5)
train_dataset = MyDataSet(x_train, y_train)
val_dataset = MyDataSet(x_val, y_val)
test_dataset = MyDataSet(x_test, y_test)
"""
file_suffix = ""
if is_binned:
file_suffix = "_binned"
data_files = {
# small samples
"train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
"validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
"test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
# large samples
"train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
"validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
"test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",
}
dataset_map = None
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv")
if is_my_laptop:
dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
else:
dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)
train_dataset = MQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
seq_len=WINDOW
)
val_dataset = MQTLDataset(dataset_map[f"validate_binned_{WINDOW}"],
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
seq_len=WINDOW)
test_dataset = MQTLDataset(dataset_map[f"test_binned_{WINDOW}"],
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
seq_len=WINDOW)
data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset)
classifier_model = classifier_model #.to(DEVICE)
try:
classifier_model = classifier_model.from_pretrained(f"my-awesome-model-{WINDOW}")
except Exception as x:
print(x)
classifier_module = MQtlClassifierLightningModule(classifier=classifier_model, regularization=2,
m_optimizer=m_optimizer)
# if os.path.exists(model_save_path):
# classifier_module.load_state_dict(torch.load(model_save_path))
classifier_module = classifier_module # .double()
trainer = Trainer(max_epochs=max_epochs, precision="32")
trainer.fit(model=classifier_module, datamodule=data_module)
timber.info("\n\n")
trainer.test(model=classifier_module, datamodule=data_module)
timber.info("\n\n")
torch.save(classifier_module.state_dict(), model_save_path)
# save locally
model_subdirectory = f"my-awesome-model-{WINDOW}"
classifier_model.save_pretrained(model_subdirectory)
# push to the hub
classifier_model.push_to_hub(
repo_id="fahimfarhan/mqtl-classifier-model",
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
commit_message=f":tada: Push model for window size {WINDOW}"
)
# reload
model = classifier_model.from_pretrained(f"my-awesome-model-{WINDOW}")
# repo_url = "https://huggingface.co/fahimfarhan/mqtl-classifier-model"
#
# push_to_hub(
# model_file=classifier_model.file_name, # Replace with your model file path
# repo_url=repo_url,
# # config_file="config.json" # Optional, if you have a config file
# )
# start_interpreting_ig_and_dl(classifier_model, WINDOW, dataset_folder_prefix=dataset_folder_prefix)
# start_interpreting_with_dlshap(classifier_model, WINDOW, dataset_folder_prefix=dataset_folder_prefix)
# if is_attention_model: # todo: repair it later
# start_interpreting_attention_failed(classifier_model)
pass
if __name__ == '__main__':
login_inside_huggingface_virtualmachine()
WINDOW = 200
simple_cnn = Cnn1dClassifier(seq_len=WINDOW)
simple_cnn.enable_logging = True
start(classifier_model=simple_cnn, model_save_path=simple_cnn.file_name, WINDOW=WINDOW,
dataset_folder_prefix="inputdata/", is_debug=True, max_epochs=10)
pass
"""
lightning_logs/
*.pth
my-awesome-model
INFO:root:validate_acc = 0.5625, validate_auc = 0.5490195751190186, validate_f1_score = 0.30000001192092896, validate_precision = 0.6000000238418579, validate_recall = 0.20000000298023224
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=15` in the `DataLoader` to improve performance.
"""
|