fadzwan commited on
Commit
37d79d0
·
verified ·
1 Parent(s): 69519a2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import streamlit as st
3
+ from sklearn.datasets import load_iris
4
+ from sklearn.linear_model import LinearRegression
5
+ from sklearn.model_selection import train_test_split
6
+
7
+ # Load the Iris dataset
8
+ iris = load_iris()
9
+ X = iris.data
10
+ y = iris.target
11
+
12
+ # Split the data into training and testing sets
13
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
14
+
15
+ # Create and train the linear regression model
16
+ model = LinearRegression()
17
+ model.fit(X_train, y_train)
18
+
19
+ # Streamlit app
20
+ st.title("Iris Linear Regression")
21
+
22
+ # Accept user input
23
+ sepal_length = st.number_input("Sepal Length", min_value=0.0, max_value=10.0, value=5.8, step=0.1)
24
+ sepal_width = st.number_input("Sepal Width", min_value=0.0, max_value=10.0, value=3.0, step=0.1)
25
+ petal_length = st.number_input("Petal Length", min_value=0.0, max_value=10.0, value=3.8, step=0.1)
26
+ petal_width = st.number_input("Petal Width", min_value=0.0, max_value=10.0, value=1.2, step=0.1)
27
+
28
+ # Make prediction
29
+ user_input = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
30
+ prediction = model.predict(user_input)
31
+
32
+ # Display the result
33
+ st.write(f"The predicted iris species is: {iris.target_names[int(prediction[0])]}")