Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,32 @@ import pandas as pd
|
|
9 |
|
10 |
def load_data():
|
11 |
# Load data from CSV files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
X_train = pd.read_csv('slump_test.data.csv').values[:,:-1]
|
13 |
-
X_train = X_train.drop('SLUM (cm)',axis=1)
|
14 |
y_train = pd.read_csv('slump_test.data.csv').values[:, -1]
|
|
|
15 |
|
16 |
|
17 |
return X_train, y_train
|
|
|
9 |
|
10 |
def load_data():
|
11 |
# Load data from CSV files
|
12 |
+
df = pd.read_csv('slump_test.data.csv')
|
13 |
+
df.drop(columns=['SLUMP(cm)'], inplace=True)
|
14 |
+
df.dropna(inplace=True)
|
15 |
+
# df = pd.get_dummies(df, drop_first=True)
|
16 |
+
# numeric_columns = df.select_dtypes(include=['int64', 'float64']).columns
|
17 |
+
# # Creating a MinMaxScaler object
|
18 |
+
# scaler = MinMaxScaler()
|
19 |
+
# # Normalizing numeric features
|
20 |
+
# df[numeric_columns] = scaler.fit_transform(df[numeric_columns])
|
21 |
+
# scaler = StandardScaler()
|
22 |
+
# df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
|
23 |
+
|
24 |
+
# # Perform PCA
|
25 |
+
# pca = PCA()
|
26 |
+
# df_pca = pca.fit_transform(df_scaled)
|
27 |
+
|
28 |
+
# Calculate explained variance
|
29 |
+
# explained_variance = pca.explained_variance_ratio_
|
30 |
+
|
31 |
+
# Create a DataFrame with the PCA results
|
32 |
+
pca_columns = [f'PC{i+1}' for i in range(df_scaled.shape[1])]
|
33 |
+
df_pca = pd.DataFrame(df_pca, columns=pca_columns)
|
34 |
+
|
35 |
X_train = pd.read_csv('slump_test.data.csv').values[:,:-1]
|
|
|
36 |
y_train = pd.read_csv('slump_test.data.csv').values[:, -1]
|
37 |
+
|
38 |
|
39 |
|
40 |
return X_train, y_train
|