fadzwan commited on
Commit
2b337bb
·
verified ·
1 Parent(s): 96e61f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -0
app.py CHANGED
@@ -76,6 +76,23 @@ def predict_slump(cement, blast_furnace_slag, fly_ash, water, superplasticizer,
76
  def main():
77
  st.set_page_config(page_title="Concrete Slump Strength Prediction")
78
  st.title("Concrete Slump Strength Prediction")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  st.write("Enter the concrete mix parameters to predict the slump.")
80
 
81
  try:
@@ -90,6 +107,7 @@ def main():
90
  pca = PCA(n_components=4)
91
  pca.fit(scaler.transform(X_train))
92
  save_model_artifacts(regressor, scaler, pca)
 
93
 
94
  cement = st.number_input("Cement (kg/m^3)", min_value=0.0, step=1.0)
95
  blast_furnace_slag = st.number_input("Blast Furnace Slag (kg/m^3)", min_value=0.0, step=1.0)
 
76
  def main():
77
  st.set_page_config(page_title="Concrete Slump Strength Prediction")
78
  st.title("Concrete Slump Strength Prediction")
79
+
80
+ st.write("""
81
+ Concrete slump strength prediction is an important topic that can have implications for several Sustainable Development Goals (SDGs) set by the United Nations.
82
+ """)
83
+
84
+ st.subheader("SDG 9: Industry, Innovation, and Infrastructure")
85
+ st.write("""
86
+ - Accurate prediction of concrete slump strength can help in the design and construction of more robust and resilient infrastructure, such as buildings, bridges, and roads. This supports the goal of building sustainable and resilient infrastructure.
87
+ - Improved concrete strength prediction can lead to more efficient use of materials and resources, reducing waste and promoting sustainable construction practices.
88
+ """)
89
+
90
+ st.subheader("SDG 11: Sustainable Cities and Communities")
91
+ st.write("""
92
+ - Reliable concrete slump strength prediction can contribute to the development of sustainable and resilient cities. Robust infrastructure built with high-quality concrete can withstand natural disasters and environmental stresses, enhancing the livability and sustainability of urban areas.
93
+ - Accurate slump strength prediction can also help in the planning and construction of affordable and accessible housing, which is a key component of sustainable cities.
94
+ """)
95
+
96
  st.write("Enter the concrete mix parameters to predict the slump.")
97
 
98
  try:
 
107
  pca = PCA(n_components=4)
108
  pca.fit(scaler.transform(X_train))
109
  save_model_artifacts(regressor, scaler, pca)
110
+
111
 
112
  cement = st.number_input("Cement (kg/m^3)", min_value=0.0, step=1.0)
113
  blast_furnace_slag = st.number_input("Blast Furnace Slag (kg/m^3)", min_value=0.0, step=1.0)