Gael Le Lan
Initial commit
9d0d223
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
All the functions to build the relevant models and modules
from the Hydra config.
"""
import typing as tp
import omegaconf
import torch
import audiocraft
from .. import quantization as qt
from ..modules.codebooks_patterns import (CoarseFirstPattern,
CodebooksPatternProvider,
DelayedPatternProvider,
MusicLMPattern,
ParallelPatternProvider,
UnrolledPatternProvider)
from ..modules.conditioners import (BaseConditioner, ChromaStemConditioner,
CLAPEmbeddingConditioner, ConditionFuser,
ConditioningProvider, LUTConditioner,
T5Conditioner)
from ..modules.diffusion_schedule import MultiBandProcessor, SampleProcessor
from ..utils.utils import dict_from_config
from .encodec import (CompressionModel, EncodecModel,
InterleaveStereoCompressionModel)
from .flow import FlowModel
from .lm import LMModel
from .lm_magnet import MagnetLMModel
from .unet import DiffusionUnet
from .watermark import WMModel
def get_quantizer(
quantizer: str, cfg: omegaconf.DictConfig, dimension: int
) -> qt.BaseQuantizer:
klass = {"no_quant": qt.DummyQuantizer, "rvq": qt.ResidualVectorQuantizer}[
quantizer
]
kwargs = dict_from_config(getattr(cfg, quantizer))
if quantizer != "no_quant":
kwargs["dimension"] = dimension
return klass(**kwargs)
def get_encodec_autoencoder(encoder_name: str, cfg: omegaconf.DictConfig):
if encoder_name == "seanet":
kwargs = dict_from_config(getattr(cfg, "seanet"))
encoder_override_kwargs = kwargs.pop("encoder")
decoder_override_kwargs = kwargs.pop("decoder")
encoder_kwargs = {**kwargs, **encoder_override_kwargs}
decoder_kwargs = {**kwargs, **decoder_override_kwargs}
encoder = audiocraft.modules.SEANetEncoder(**encoder_kwargs)
decoder = audiocraft.modules.SEANetDecoder(**decoder_kwargs)
return encoder, decoder
else:
raise KeyError(f"Unexpected compression model {cfg.compression_model}")
def get_compression_model(cfg: omegaconf.DictConfig) -> CompressionModel:
"""Instantiate a compression model."""
if cfg.compression_model == "encodec":
kwargs = dict_from_config(getattr(cfg, "encodec"))
encoder_name = kwargs.pop("autoencoder")
quantizer_name = kwargs.pop("quantizer")
encoder, decoder = get_encodec_autoencoder(encoder_name, cfg)
quantizer = get_quantizer(quantizer_name, cfg, encoder.dimension)
frame_rate = kwargs["sample_rate"] // encoder.hop_length
renormalize = kwargs.pop("renormalize", False)
# deprecated params
kwargs.pop("renorm", None)
return EncodecModel(
encoder,
decoder,
quantizer,
frame_rate=frame_rate,
renormalize=renormalize,
**kwargs,
).to(cfg.device)
else:
raise KeyError(f"Unexpected compression model {cfg.compression_model}")
def get_lm_model(cfg: omegaconf.DictConfig) -> LMModel:
"""Instantiate a transformer LM."""
if cfg.lm_model in ["transformer_lm", "transformer_lm_magnet"]:
kwargs = dict_from_config(getattr(cfg, "transformer_lm"))
n_q = kwargs["n_q"]
q_modeling = kwargs.pop("q_modeling", None)
codebooks_pattern_cfg = getattr(cfg, "codebooks_pattern")
attribute_dropout = dict_from_config(getattr(cfg, "attribute_dropout"))
cls_free_guidance = dict_from_config(getattr(cfg, "classifier_free_guidance"))
cfg_prob, cfg_coef = (
cls_free_guidance["training_dropout"],
cls_free_guidance["inference_coef"],
)
fuser = get_condition_fuser(cfg)
condition_provider = get_conditioner_provider(kwargs["dim"], cfg).to(cfg.device)
if len(fuser.fuse2cond["cross"]) > 0: # enforce cross-att programmatically
kwargs["cross_attention"] = True
if codebooks_pattern_cfg.modeling is None:
assert (
q_modeling is not None
), "LM model should either have a codebook pattern defined or transformer_lm.q_modeling"
codebooks_pattern_cfg = omegaconf.OmegaConf.create(
{"modeling": q_modeling, "delay": {"delays": list(range(n_q))}}
)
pattern_provider = get_codebooks_pattern_provider(n_q, codebooks_pattern_cfg)
lm_class = MagnetLMModel if cfg.lm_model == "transformer_lm_magnet" else LMModel
return lm_class(
pattern_provider=pattern_provider,
condition_provider=condition_provider,
fuser=fuser,
cfg_dropout=cfg_prob,
cfg_coef=cfg_coef,
attribute_dropout=attribute_dropout,
dtype=getattr(torch, cfg.dtype),
device=cfg.device,
**kwargs,
).to(cfg.device)
else:
raise KeyError(f"Unexpected LM model {cfg.lm_model}")
def get_dit_model(cfg: omegaconf.DictConfig) -> FlowModel:
"""Instantiate a DiT"""
kwargs = dict_from_config(cfg.transformer_lm)
mask_cross_attention = kwargs.get("mask_cross_attention", False)
fuser = get_condition_fuser(
cfg,
).to(cfg.device)
condition_provider = get_conditioner_provider(
kwargs["dim"],
cfg,
).to(cfg.device)
kwargs["cross_attention"] = (
True if len(fuser.fuse2cond["cross"]) > 0 else False
) # cross-att is dependent on fuser type
if not kwargs["cross_attention"] and mask_cross_attention:
kwargs["mask_cross_attention"] = False
fuser.mask_cross_attention = False
flow_model = FlowModel(
condition_provider,
fuser,
device=cfg.device,
**kwargs,
)
return flow_model
def get_conditioner_provider(
output_dim: int, cfg: omegaconf.DictConfig
) -> ConditioningProvider:
"""Instantiate a conditioning model."""
device = cfg.device
duration = cfg.dataset.segment_duration
cfg = getattr(cfg, "conditioners")
dict_cfg = {} if cfg is None else dict_from_config(cfg)
conditioners: tp.Dict[str, BaseConditioner] = {}
condition_provider_args = dict_cfg.pop("args", {})
condition_provider_args.pop("merge_text_conditions_p", None)
condition_provider_args.pop("drop_desc_p", None)
for cond, cond_cfg in dict_cfg.items():
model_type = cond_cfg["model"]
model_args = cond_cfg[model_type]
if model_type == "t5":
conditioners[str(cond)] = T5Conditioner(
output_dim=output_dim, device=device, **model_args
)
elif model_type == "lut":
conditioners[str(cond)] = LUTConditioner(
output_dim=output_dim, **model_args
)
elif model_type == "chroma_stem":
conditioners[str(cond)] = ChromaStemConditioner(
output_dim=output_dim, duration=duration, device=device, **model_args
)
elif model_type == "clap":
conditioners[str(cond)] = CLAPEmbeddingConditioner(
output_dim=output_dim, device=device, **model_args
)
else:
raise ValueError(f"Unrecognized conditioning model: {model_type}")
conditioner = ConditioningProvider(
conditioners, device=device, **condition_provider_args
)
return conditioner
def get_condition_fuser(cfg: omegaconf.DictConfig) -> ConditionFuser:
"""Instantiate a condition fuser object."""
fuser_cfg = getattr(cfg, "fuser")
fuser_methods = ["sum", "cross", "prepend", "input_interpolate"]
fuse2cond = {k: fuser_cfg[k] for k in fuser_methods}
kwargs = {k: v for k, v in fuser_cfg.items() if k not in fuser_methods}
fuser = ConditionFuser(fuse2cond=fuse2cond, **kwargs)
return fuser
def get_codebooks_pattern_provider(
n_q: int, cfg: omegaconf.DictConfig
) -> CodebooksPatternProvider:
"""Instantiate a codebooks pattern provider object."""
pattern_providers = {
"parallel": ParallelPatternProvider,
"delay": DelayedPatternProvider,
"unroll": UnrolledPatternProvider,
"coarse_first": CoarseFirstPattern,
"musiclm": MusicLMPattern,
}
name = cfg.modeling
kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {}
klass = pattern_providers[name]
return klass(n_q, **kwargs)
def get_debug_compression_model(device="cpu", sample_rate: int = 32000):
"""Instantiate a debug compression model to be used for unit tests."""
assert sample_rate in [
16000,
32000,
], "unsupported sample rate for debug compression model"
model_ratios = {
16000: [10, 8, 8], # 25 Hz at 16kHz
32000: [10, 8, 16], # 25 Hz at 32kHz
}
ratios: tp.List[int] = model_ratios[sample_rate]
frame_rate = 25
seanet_kwargs: dict = {
"n_filters": 4,
"n_residual_layers": 1,
"dimension": 32,
"ratios": ratios,
}
encoder = audiocraft.modules.SEANetEncoder(**seanet_kwargs)
decoder = audiocraft.modules.SEANetDecoder(**seanet_kwargs)
quantizer = qt.ResidualVectorQuantizer(dimension=32, bins=400, n_q=4)
init_x = torch.randn(8, 32, 128)
quantizer(init_x, 1) # initialize kmeans etc.
compression_model = EncodecModel(
encoder,
decoder,
quantizer,
frame_rate=frame_rate,
sample_rate=sample_rate,
channels=1,
).to(device)
return compression_model.eval()
def get_diffusion_model(cfg: omegaconf.DictConfig):
# TODO Find a way to infer the channels from dset
channels = cfg.channels
num_steps = cfg.schedule.num_steps
return DiffusionUnet(chin=channels, num_steps=num_steps, **cfg.diffusion_unet)
def get_processor(cfg, sample_rate: int = 24000):
sample_processor = SampleProcessor()
if cfg.use:
kw = dict(cfg)
kw.pop("use")
kw.pop("name")
if cfg.name == "multi_band_processor":
sample_processor = MultiBandProcessor(sample_rate=sample_rate, **kw)
return sample_processor
def get_debug_lm_model(device="cpu"):
"""Instantiate a debug LM to be used for unit tests."""
pattern = DelayedPatternProvider(n_q=4)
dim = 16
providers = {
"description": LUTConditioner(
n_bins=128, dim=dim, output_dim=dim, tokenizer="whitespace"
),
}
condition_provider = ConditioningProvider(providers)
fuser = ConditionFuser(
{"cross": ["description"], "prepend": [], "sum": [], "input_interpolate": []}
)
lm = LMModel(
pattern,
condition_provider,
fuser,
n_q=4,
card=400,
dim=dim,
num_heads=4,
custom=True,
num_layers=2,
cross_attention=True,
causal=True,
)
return lm.to(device).eval()
def get_wrapped_compression_model(
compression_model: CompressionModel, cfg: omegaconf.DictConfig
) -> CompressionModel:
if hasattr(cfg, "interleave_stereo_codebooks"):
if cfg.interleave_stereo_codebooks.use:
kwargs = dict_from_config(cfg.interleave_stereo_codebooks)
kwargs.pop("use")
compression_model = InterleaveStereoCompressionModel(
compression_model, **kwargs
)
if hasattr(cfg, "compression_model_n_q"):
if cfg.compression_model_n_q is not None:
compression_model.set_num_codebooks(cfg.compression_model_n_q)
return compression_model
def get_watermark_model(cfg: omegaconf.DictConfig) -> WMModel:
"""Build a WMModel based by audioseal. This requires audioseal to be installed"""
import audioseal
from .watermark import AudioSeal
# Builder encoder and decoder directly using audiocraft API to avoid cyclic import
assert hasattr(
cfg, "seanet"
), "Missing required `seanet` parameters in AudioSeal config"
encoder, decoder = get_encodec_autoencoder("seanet", cfg)
# Build message processor
kwargs = (
dict_from_config(getattr(cfg, "audioseal")) if hasattr(cfg, "audioseal") else {}
)
nbits = kwargs.get("nbits", 0)
hidden_size = getattr(cfg.seanet, "dimension", 128)
msg_processor = audioseal.MsgProcessor(nbits, hidden_size=hidden_size)
# Build detector using audioseal API
def _get_audioseal_detector():
# We don't need encoder and decoder params from seanet, remove them
seanet_cfg = dict_from_config(cfg.seanet)
seanet_cfg.pop("encoder")
seanet_cfg.pop("decoder")
detector_cfg = dict_from_config(cfg.detector)
typed_seanet_cfg = audioseal.builder.SEANetConfig(**seanet_cfg)
typed_detector_cfg = audioseal.builder.DetectorConfig(**detector_cfg)
_cfg = audioseal.builder.AudioSealDetectorConfig(
nbits=nbits, seanet=typed_seanet_cfg, detector=typed_detector_cfg
)
return audioseal.builder.create_detector(_cfg)
detector = _get_audioseal_detector()
generator = audioseal.AudioSealWM(
encoder=encoder, decoder=decoder, msg_processor=msg_processor
)
model = AudioSeal(generator=generator, detector=detector, nbits=nbits)
device = torch.device(getattr(cfg, "device", "cpu"))
dtype = getattr(torch, getattr(cfg, "dtype", "float32"))
return model.to(device=device, dtype=dtype)