File size: 14,280 Bytes
9d0d223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
All the functions to build the relevant solvers and used objects
from the Hydra config.
"""

from enum import Enum
import logging
import typing as tp

import dora
import flashy
import omegaconf
import torch
from torch import nn
from torch.optim import Optimizer

# LRScheduler was renamed in some torch versions
try:
    from torch.optim.lr_scheduler import LRScheduler  # type: ignore
except ImportError:
    from torch.optim.lr_scheduler import _LRScheduler as LRScheduler

from .base import StandardSolver
from .. import adversarial, data, losses, metrics, optim
from ..utils.utils import dict_from_config, get_loader


logger = logging.getLogger(__name__)


class DatasetType(Enum):
    AUDIO = "audio"
    MUSIC = "music"
    SOUND = "sound"


def get_solver(cfg: omegaconf.DictConfig) -> StandardSolver:
    """Instantiate solver from config."""
    from .audiogen import AudioGenSolver
    from .compression import CompressionSolver
    from .musicgen import MusicGenSolver
    from .diffusion import DiffusionSolver
    from .magnet import MagnetSolver, AudioMagnetSolver
    from .watermark import WatermarkSolver
    klass = {
        'compression': CompressionSolver,
        'musicgen': MusicGenSolver,
        'audiogen': AudioGenSolver,
        'magnet': MagnetSolver,
        'audio_magnet': AudioMagnetSolver,
        'lm': MusicGenSolver,  # backward compatibility
        'diffusion': DiffusionSolver,
        'sound_lm': AudioGenSolver,  # backward compatibility
        'watermarking': WatermarkSolver,
    }[cfg.solver]
    return klass(cfg)  # type: ignore


def get_optim_parameter_groups(model: nn.Module):
    """Create parameter groups for the model using the appropriate method
    if defined for each modules, to create the different groups.

    Args:
        model (nn.Module): torch model
    Returns:
        List of parameter groups
    """
    seen_params: tp.Set[nn.parameter.Parameter] = set()
    other_params = []
    groups = []
    for name, module in model.named_modules():
        if hasattr(module, 'make_optim_group'):
            group = module.make_optim_group()
            params = set(group['params'])
            assert params.isdisjoint(seen_params)
            seen_params |= set(params)
            groups.append(group)
    for param in model.parameters():
        if param not in seen_params:
            other_params.append(param)
    groups.insert(0, {'params': other_params})
    parameters = groups
    return parameters


def get_optimizer(params: tp.Union[nn.Module, tp.Iterable[torch.Tensor]], cfg: omegaconf.DictConfig) -> Optimizer:
    """Build torch optimizer from config and set of parameters.
    Supported optimizers: Adam, AdamW

    Args:
        params (nn.Module or iterable of torch.Tensor): Parameters to optimize.
        cfg (DictConfig): Optimization-related configuration.
    Returns:
        torch.optim.Optimizer.
    """
    if 'optimizer' not in cfg:
        if getattr(cfg, 'optim', None) is not None:
            raise KeyError("Optimizer not found in config. Try instantiating optimizer from cfg.optim?")
        else:
            raise KeyError("Optimizer not found in config.")

    parameters = get_optim_parameter_groups(params) if isinstance(params, nn.Module) else params
    optimizer: torch.optim.Optimizer
    if cfg.optimizer == 'adam':
        optimizer = torch.optim.Adam(parameters, lr=cfg.lr, **cfg.adam)
    elif cfg.optimizer == 'adamw':
        optimizer = torch.optim.AdamW(parameters, lr=cfg.lr, **cfg.adam)
    elif cfg.optimizer == 'dadam':
        optimizer = optim.DAdaptAdam(parameters, lr=cfg.lr, **cfg.adam)
    else:
        raise ValueError(f"Unsupported Optimizer: {cfg.optimizer}")
    return optimizer


def get_lr_scheduler(optimizer: torch.optim.Optimizer,
                     cfg: omegaconf.DictConfig,
                     total_updates: int) -> tp.Optional[LRScheduler]:
    """Build torch learning rate scheduler from config and associated optimizer.
    Supported learning rate schedulers: ExponentialLRScheduler, PlateauLRScheduler

    Args:
        optimizer (torch.optim.Optimizer): Optimizer.
        cfg (DictConfig): Schedule-related configuration.
        total_updates (int): Total number of updates.
    Returns:
        torch.optim.Optimizer.
    """
    if 'lr_scheduler' not in cfg:
        raise KeyError("LR Scheduler not found in config")

    lr_sched: tp.Optional[LRScheduler] = None
    if cfg.lr_scheduler == 'step':
        lr_sched = torch.optim.lr_scheduler.StepLR(optimizer, **cfg.step)
    elif cfg.lr_scheduler == 'exponential':
        lr_sched = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=cfg.exponential)
    elif cfg.lr_scheduler == 'cosine':
        kwargs = dict_from_config(cfg.cosine)
        warmup_steps = kwargs.pop('warmup')
        lr_sched = optim.CosineLRScheduler(
            optimizer, warmup_steps=warmup_steps, total_steps=total_updates, **kwargs)
    elif cfg.lr_scheduler == 'polynomial_decay':
        kwargs = dict_from_config(cfg.polynomial_decay)
        warmup_steps = kwargs.pop('warmup')
        lr_sched = optim.PolynomialDecayLRScheduler(
            optimizer, warmup_steps=warmup_steps, total_steps=total_updates, **kwargs)
    elif cfg.lr_scheduler == 'inverse_sqrt':
        kwargs = dict_from_config(cfg.inverse_sqrt)
        warmup_steps = kwargs.pop('warmup')
        lr_sched = optim.InverseSquareRootLRScheduler(optimizer, warmup_steps=warmup_steps, **kwargs)
    elif cfg.lr_scheduler == 'linear_warmup':
        kwargs = dict_from_config(cfg.linear_warmup)
        warmup_steps = kwargs.pop('warmup')
        lr_sched = optim.LinearWarmupLRScheduler(optimizer, warmup_steps=warmup_steps, **kwargs)
    elif cfg.lr_scheduler is not None:
        raise ValueError(f"Unsupported LR Scheduler: {cfg.lr_scheduler}")
    return lr_sched


def get_ema(module_dict: nn.ModuleDict, cfg: omegaconf.DictConfig) -> tp.Optional[optim.ModuleDictEMA]:
    """Initialize Exponential Moving Average.

    Args:
        module_dict (nn.ModuleDict): ModuleDict for which to compute the EMA.
        cfg (omegaconf.DictConfig): Optim EMA configuration.
    Returns:
        optim.ModuleDictEMA: EMA version of the ModuleDict.
    """
    kw: tp.Dict[str, tp.Any] = dict(cfg)
    use = kw.pop('use', False)
    decay = kw.pop('decay', None)
    device = kw.pop('device', None)
    if not use:
        return None
    if len(module_dict) == 0:
        raise ValueError("Trying to build EMA but an empty module_dict source is provided!")
    ema_module = optim.ModuleDictEMA(module_dict, decay=decay, device=device)
    return ema_module


def get_loss(loss_name: str, cfg: omegaconf.DictConfig):
    """Instantiate loss from configuration."""
    klass = {
        'l1': torch.nn.L1Loss,
        'l2': torch.nn.MSELoss,
        'mel': losses.MelSpectrogramL1Loss,
        'mrstft': losses.MRSTFTLoss,
        'msspec': losses.MultiScaleMelSpectrogramLoss,
        'sisnr': losses.SISNR,
        'wm_detection': losses.WMDetectionLoss,
        'wm_mb': losses.WMMbLoss,
        'tf_loudnessratio': losses.TFLoudnessRatio
    }[loss_name]
    kwargs = dict(getattr(cfg, loss_name))
    return klass(**kwargs)


def get_balancer(loss_weights: tp.Dict[str, float], cfg: omegaconf.DictConfig) -> losses.Balancer:
    """Instantiate loss balancer from configuration for the provided weights."""
    kwargs: tp.Dict[str, tp.Any] = dict_from_config(cfg)
    return losses.Balancer(loss_weights, **kwargs)


def get_adversary(name: str, cfg: omegaconf.DictConfig) -> nn.Module:
    """Initialize adversary from config."""
    klass = {
        'msd': adversarial.MultiScaleDiscriminator,
        'mpd': adversarial.MultiPeriodDiscriminator,
        'msstftd': adversarial.MultiScaleSTFTDiscriminator,
    }[name]
    adv_cfg: tp.Dict[str, tp.Any] = dict(getattr(cfg, name))
    return klass(**adv_cfg)


def get_adversarial_losses(cfg) -> nn.ModuleDict:
    """Initialize dict of adversarial losses from config."""
    device = cfg.device
    adv_cfg = getattr(cfg, 'adversarial')
    adversaries = adv_cfg.get('adversaries', [])
    adv_loss_name = adv_cfg['adv_loss']
    feat_loss_name = adv_cfg.get('feat_loss')
    normalize = adv_cfg.get('normalize', True)
    feat_loss: tp.Optional[adversarial.FeatureMatchingLoss] = None
    if feat_loss_name:
        assert feat_loss_name in ['l1', 'l2'], f"Feature loss only support L1 or L2 but {feat_loss_name} found."
        loss = get_loss(feat_loss_name, cfg)
        feat_loss = adversarial.FeatureMatchingLoss(loss, normalize)
    loss = adversarial.get_adv_criterion(adv_loss_name)
    loss_real = adversarial.get_real_criterion(adv_loss_name)
    loss_fake = adversarial.get_fake_criterion(adv_loss_name)
    adv_losses = nn.ModuleDict()
    for adv_name in adversaries:
        adversary = get_adversary(adv_name, cfg).to(device)
        optimizer = get_optimizer(adversary.parameters(), cfg.optim)
        adv_loss = adversarial.AdversarialLoss(
            adversary,
            optimizer,
            loss=loss,
            loss_real=loss_real,
            loss_fake=loss_fake,
            loss_feat=feat_loss,
            normalize=normalize
        )
        adv_losses[adv_name] = adv_loss
    return adv_losses


def get_visqol(cfg: omegaconf.DictConfig) -> metrics.ViSQOL:
    """Instantiate ViSQOL metric from config."""
    kwargs = dict_from_config(cfg)
    return metrics.ViSQOL(**kwargs)


def get_fad(cfg: omegaconf.DictConfig) -> metrics.FrechetAudioDistanceMetric:
    """Instantiate Frechet Audio Distance metric from config."""
    kwargs = dict_from_config(cfg.tf)
    xp = dora.get_xp()
    kwargs['log_folder'] = xp.folder
    return metrics.FrechetAudioDistanceMetric(**kwargs)


def get_kldiv(cfg: omegaconf.DictConfig) -> metrics.KLDivergenceMetric:
    """Instantiate KL-Divergence metric from config."""
    kld_metrics = {
        'passt': metrics.PasstKLDivergenceMetric,
    }
    klass = kld_metrics[cfg.model]
    kwargs = dict_from_config(cfg.get(cfg.model))
    return klass(**kwargs)


def get_text_consistency(cfg: omegaconf.DictConfig) -> metrics.TextConsistencyMetric:
    """Instantiate Text Consistency metric from config."""
    text_consistency_metrics = {
        'clap': metrics.CLAPTextConsistencyMetric
    }
    klass = text_consistency_metrics[cfg.model]
    kwargs = dict_from_config(cfg.get(cfg.model))
    return klass(**kwargs)


def get_chroma_cosine_similarity(cfg: omegaconf.DictConfig) -> metrics.ChromaCosineSimilarityMetric:
    """Instantiate Chroma Cosine Similarity metric from config."""
    assert cfg.model == 'chroma_base', "Only support 'chroma_base' method for chroma cosine similarity metric"
    kwargs = dict_from_config(cfg.get(cfg.model))
    return metrics.ChromaCosineSimilarityMetric(**kwargs)


def get_audio_datasets(cfg: omegaconf.DictConfig,
                       dataset_type: DatasetType = DatasetType.AUDIO) -> tp.Dict[str, torch.utils.data.DataLoader]:
    """Build AudioDataset from configuration.

    Args:
        cfg (omegaconf.DictConfig): Configuration.
        dataset_type: The type of dataset to create.
    Returns:
        dict[str, torch.utils.data.DataLoader]: Map of dataloader for each data split.
    """
    dataloaders: dict = {}

    sample_rate = cfg.sample_rate
    channels = cfg.channels
    seed = cfg.seed
    max_sample_rate = cfg.datasource.max_sample_rate
    max_channels = cfg.datasource.max_channels

    assert cfg.dataset is not None, "Could not find dataset definition in config"

    dataset_cfg = dict_from_config(cfg.dataset)
    splits_cfg: dict = {}
    splits_cfg['train'] = dataset_cfg.pop('train')
    splits_cfg['valid'] = dataset_cfg.pop('valid')
    splits_cfg['evaluate'] = dataset_cfg.pop('evaluate')
    splits_cfg['generate'] = dataset_cfg.pop('generate')
    execute_only_stage = cfg.get('execute_only', None)

    for split, path in cfg.datasource.items():
        if not isinstance(path, str):
            continue  # skipping this as not a path
        if execute_only_stage is not None and split != execute_only_stage:
            continue
        logger.info(f"Loading audio data split {split}: {str(path)}")
        assert (
            cfg.sample_rate <= max_sample_rate
        ), f"Expecting a max sample rate of {max_sample_rate} for datasource but {sample_rate} found."
        assert (
            cfg.channels <= max_channels
        ), f"Expecting a max number of channels of {max_channels} for datasource but {channels} found."

        split_cfg = splits_cfg[split]
        split_kwargs = {k: v for k, v in split_cfg.items()}
        kwargs = {**dataset_cfg, **split_kwargs}  # split kwargs overrides default dataset_cfg
        kwargs['sample_rate'] = sample_rate
        kwargs['channels'] = channels

        if kwargs.get('permutation_on_files') and cfg.optim.updates_per_epoch:
            kwargs['num_samples'] = (
                flashy.distrib.world_size() * cfg.dataset.batch_size * cfg.optim.updates_per_epoch)

        num_samples = kwargs['num_samples']
        shuffle = kwargs['shuffle']

        return_info = kwargs.pop('return_info')
        batch_size = kwargs.pop('batch_size', None)
        num_workers = kwargs.pop('num_workers')

        if dataset_type == DatasetType.MUSIC:
            dataset = data.music_dataset.MusicDataset.from_meta(path, **kwargs)
        elif dataset_type == DatasetType.SOUND:
            dataset = data.sound_dataset.SoundDataset.from_meta(path, **kwargs)
        elif dataset_type == DatasetType.AUDIO:
            dataset = data.info_audio_dataset.InfoAudioDataset.from_meta(path, return_info=return_info, **kwargs)
        else:
            raise ValueError(f"Dataset type is unsupported: {dataset_type}")

        loader = get_loader(
            dataset,
            num_samples,
            batch_size=batch_size,
            num_workers=num_workers,
            seed=seed,
            collate_fn=dataset.collater if return_info else None,
            shuffle=shuffle,
        )
        dataloaders[split] = loader

    return dataloaders