eybro commited on
Commit
a1f97f0
·
verified ·
1 Parent(s): f8d12f5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -12,10 +12,7 @@ autoencoder = load_model("autoencoder_model.keras")
12
  encoded_images = np.load("X_encoded_compressed.npy")
13
  print("Shape of encoded_images:", encoded_images.shape)
14
  print("Sample encoded image:", encoded_images[0])
15
- dataset = load_dataset('eybro/images')
16
- split_dataset = dataset['train'].train_test_split(test_size=0.2)
17
- dataset['train'] = split_dataset['train']
18
- dataset['test'] = split_dataset['test']
19
 
20
  num_clusters = 10 # Choose the number of clusters
21
  kmeans = KMeans(n_clusters=num_clusters, random_state=42)
@@ -41,11 +38,15 @@ def find_nearest_neighbors(encoded_images, input_image, top_n=5):
41
  return [(index, distances[index]) for index in nearest_neighbors]
42
 
43
  def get_image(index):
44
- split = len(dataset["train"])
45
- if index < split:
46
- return dataset["train"][index]
47
- else:
48
- return dataset["test"][index-split]
 
 
 
 
49
 
50
  def process_image(image):
51
  img = np.array(image)
@@ -82,8 +83,8 @@ def inference(image):
82
  im = get_image(i)
83
  print(im["label"], im["timestamp"])
84
 
85
- result_image = get_image(top4[0])
86
- result = f"{result_image['label']} {result_image['timestamp']}"
87
 
88
  n=2
89
  plt.figure(figsize=(8, 8))
@@ -103,7 +104,7 @@ def inference(image):
103
  ax.get_xaxis().set_visible(False)
104
  ax.get_yaxis().set_visible(False)
105
 
106
- return result
107
 
108
 
109
 
 
12
  encoded_images = np.load("X_encoded_compressed.npy")
13
  print("Shape of encoded_images:", encoded_images.shape)
14
  print("Sample encoded image:", encoded_images[0])
15
+
 
 
 
16
 
17
  num_clusters = 10 # Choose the number of clusters
18
  kmeans = KMeans(n_clusters=num_clusters, random_state=42)
 
38
  return [(index, distances[index]) for index in nearest_neighbors]
39
 
40
  def get_image(index):
41
+ dataset = load_dataset('eybro/images')
42
+ split_dataset = dataset['train'].train_test_split(test_size=0.2)
43
+ dataset['train'] = split_dataset['train']
44
+ dataset['test'] = split_dataset['test']
45
+ split = len(dataset["train"])
46
+ if index < split:
47
+ return dataset["train"][index]
48
+ else:
49
+ return dataset["test"][index-split]
50
 
51
  def process_image(image):
52
  img = np.array(image)
 
83
  im = get_image(i)
84
  print(im["label"], im["timestamp"])
85
 
86
+ #result_image = get_image(top4[0])
87
+ #result = f"{result_image['label']} {result_image['timestamp']}"
88
 
89
  n=2
90
  plt.figure(figsize=(8, 8))
 
104
  ax.get_xaxis().set_visible(False)
105
  ax.get_yaxis().set_visible(False)
106
 
107
+ return None
108
 
109
 
110