Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,10 +12,7 @@ autoencoder = load_model("autoencoder_model.keras")
|
|
12 |
encoded_images = np.load("X_encoded_compressed.npy")
|
13 |
print("Shape of encoded_images:", encoded_images.shape)
|
14 |
print("Sample encoded image:", encoded_images[0])
|
15 |
-
|
16 |
-
split_dataset = dataset['train'].train_test_split(test_size=0.2)
|
17 |
-
dataset['train'] = split_dataset['train']
|
18 |
-
dataset['test'] = split_dataset['test']
|
19 |
|
20 |
num_clusters = 10 # Choose the number of clusters
|
21 |
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
@@ -41,11 +38,15 @@ def find_nearest_neighbors(encoded_images, input_image, top_n=5):
|
|
41 |
return [(index, distances[index]) for index in nearest_neighbors]
|
42 |
|
43 |
def get_image(index):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def process_image(image):
|
51 |
img = np.array(image)
|
@@ -82,8 +83,8 @@ def inference(image):
|
|
82 |
im = get_image(i)
|
83 |
print(im["label"], im["timestamp"])
|
84 |
|
85 |
-
result_image = get_image(top4[0])
|
86 |
-
result = f"{result_image['label']} {result_image['timestamp']}"
|
87 |
|
88 |
n=2
|
89 |
plt.figure(figsize=(8, 8))
|
@@ -103,7 +104,7 @@ def inference(image):
|
|
103 |
ax.get_xaxis().set_visible(False)
|
104 |
ax.get_yaxis().set_visible(False)
|
105 |
|
106 |
-
return
|
107 |
|
108 |
|
109 |
|
|
|
12 |
encoded_images = np.load("X_encoded_compressed.npy")
|
13 |
print("Shape of encoded_images:", encoded_images.shape)
|
14 |
print("Sample encoded image:", encoded_images[0])
|
15 |
+
|
|
|
|
|
|
|
16 |
|
17 |
num_clusters = 10 # Choose the number of clusters
|
18 |
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
|
|
38 |
return [(index, distances[index]) for index in nearest_neighbors]
|
39 |
|
40 |
def get_image(index):
|
41 |
+
dataset = load_dataset('eybro/images')
|
42 |
+
split_dataset = dataset['train'].train_test_split(test_size=0.2)
|
43 |
+
dataset['train'] = split_dataset['train']
|
44 |
+
dataset['test'] = split_dataset['test']
|
45 |
+
split = len(dataset["train"])
|
46 |
+
if index < split:
|
47 |
+
return dataset["train"][index]
|
48 |
+
else:
|
49 |
+
return dataset["test"][index-split]
|
50 |
|
51 |
def process_image(image):
|
52 |
img = np.array(image)
|
|
|
83 |
im = get_image(i)
|
84 |
print(im["label"], im["timestamp"])
|
85 |
|
86 |
+
#result_image = get_image(top4[0])
|
87 |
+
#result = f"{result_image['label']} {result_image['timestamp']}"
|
88 |
|
89 |
n=2
|
90 |
plt.figure(figsize=(8, 8))
|
|
|
104 |
ax.get_xaxis().set_visible(False)
|
105 |
ax.get_yaxis().set_visible(False)
|
106 |
|
107 |
+
return None
|
108 |
|
109 |
|
110 |
|