Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from sklearn.metrics.pairwise import euclidean_distances | |
import cv2 | |
from keras.models import load_model | |
from keras.models import Model | |
from datasets import load_dataset | |
from sklearn.cluster import KMeans | |
import matplotlib.pyplot as plt | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
model_path = hf_hub_download(repo_id="eybro/autoencoder", filename="autoencoder_model.keras", repo_type='model') | |
data_path = hf_hub_download(repo_id="eybro/encoded_images", filename="X_encoded_compressed.npy", repo_type='dataset') | |
autoencoder = load_model(model_path) | |
encoded_images = np.load(data_path) | |
dataset = load_dataset("eybro/images") | |
split_dataset = dataset['train'].train_test_split(test_size=0.2, seed=42) # 80% train, 20% test | |
dataset['train'] = split_dataset['train'] | |
dataset['test'] = split_dataset['test'] | |
example_images = { | |
"Example 1": "example_1.png", | |
"Example 2": "example_2.png", | |
"Example 3": "example_3.jpg" | |
} | |
def create_url_from_title(title: str, timestamp: int): | |
video_urls = load_dataset("eybro/video_urls") | |
df = video_urls['train'].to_pandas() | |
filtered = df[df['title'] == title] | |
base_url = filtered.iloc[0, :]["url"] | |
return base_url + f"&t={timestamp}s" | |
def find_nearest_neighbors(encoded_images, input_image, top_n=5): | |
""" | |
Find the closest neighbors to the input image in the encoded image space. | |
Args: | |
encoded_images (np.ndarray): Array of encoded images (shape: (n_samples, n_features)). | |
input_image (np.ndarray): The encoded input image (shape: (1, n_features)). | |
top_n (int): The number of nearest neighbors to return. | |
Returns: | |
List of tuples: (index, distance) of the top_n nearest neighbors. | |
""" | |
# Compute pairwise distances | |
distances = euclidean_distances(encoded_images, input_image.reshape(1, -1)).flatten() | |
# Sort by distance | |
nearest_neighbors = np.argsort(distances)[:top_n] | |
return [(index, distances[index]) for index in nearest_neighbors] | |
def get_image(index): | |
split = len(dataset["train"]) | |
if index < split: | |
return dataset["train"][index] | |
else: | |
return dataset["test"][index-split] | |
def process_image(image): | |
img = np.array(image) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (64, 64)) | |
img = img.astype('float32') | |
img /= 255.0 | |
img = np.expand_dims(img, axis=0) | |
layer_model = Model(inputs=autoencoder.input, outputs=autoencoder.layers[4].output) | |
encoded_array = layer_model.predict(img) | |
pooled_array = encoded_array.max(axis=-1) | |
return pooled_array # Shape: (1, n_features) | |
def inference(user_image=None, selected_example=None): | |
if user_image is not None and selected_example is not None: | |
return "Please upload an image or select an example image." | |
elif user_image is not None: | |
input_image = process_image(user_image) | |
elif selected_example is not None: | |
input_image = load_example(selected_example) | |
input_image = process_image(input_image) | |
else: | |
return "Please upload an image or select an example image." | |
nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5) | |
top4 = [int(i[0]) for i in nearest_neighbors[:4]] | |
for i in top4: | |
im = get_image(i) | |
print(im["label"], im["timestamp"]) | |
result_image = get_image(top4[0]) | |
url = create_url_from_title(result_image['label'], result_image['timestamp']) | |
result = f"{result_image['label']} {result_image['timestamp']} \n{url}" | |
return result | |
def load_example(example_name): | |
image_path = example_images.get(example_name) | |
if image_path: | |
return Image.open(image_path) | |
return None | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Image to Video App | |
Find your favorite Gordon Ramasay scene by uploading an image from the scene, the app will thereafter find a corresponding youtube video for that scene. | |
Or try one of our examples - Screenshots form Youtube videos. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
inp_image = gr.Image(label="Upload Image", type="pil") | |
example_selection = gr.Radio( | |
choices=list(example_images.keys()), | |
label="Select Example Image", | |
type="value" # Ensure single string return value | |
) | |
example_display = gr.Image(label="Selected Example Image", type="pil") | |
with gr.Column(): | |
output = gr.Markdown() | |
example_selection.change( | |
lambda selected_example: load_example(selected_example), | |
inputs=[example_selection], | |
outputs=[example_display] | |
) | |
clear_button = gr.Button("Clear Example") | |
clear_button.click( | |
lambda: (None, None), | |
inputs=[], | |
outputs=[example_selection, example_display] | |
) | |
submit_button = gr.Button("Submit") | |
submit_button.click( | |
lambda user_image, selected_example: inference(user_image=user_image, selected_example=selected_example), | |
inputs=[inp_image, example_selection], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() |