Upload train.py with huggingface_hub
Browse files
train.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Train NEAT networks to play volleyball using hardware acceleration when available."""
|
2 |
+
|
3 |
+
import jax
|
4 |
+
import jax.numpy as jnp
|
5 |
+
from jax import random
|
6 |
+
from evojax.task.slimevolley import SlimeVolley
|
7 |
+
from typing import List, Tuple, Dict
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
import os
|
13 |
+
|
14 |
+
# Try to initialize JAX with GPU
|
15 |
+
try:
|
16 |
+
# Configure JAX to use GPU
|
17 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
18 |
+
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
|
19 |
+
os.environ['XLA_PYTHON_CLIENT_ALLOCATOR'] = 'platform'
|
20 |
+
|
21 |
+
# Check available devices
|
22 |
+
print(f"JAX devices available: {jax.devices()}")
|
23 |
+
print(f"Using device: {jax.devices()[0].platform.upper()}")
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Note: Using CPU - {str(e)}")
|
26 |
+
|
27 |
+
class NodeGene:
|
28 |
+
"""A gene representing a node in the neural network."""
|
29 |
+
def __init__(self, id: int, node_type: str, activation: str = 'tanh'):
|
30 |
+
self.id = id
|
31 |
+
self.type = node_type # 'input', 'hidden', or 'output'
|
32 |
+
self.activation = activation
|
33 |
+
|
34 |
+
# Use deterministic key generation
|
35 |
+
seed = abs(hash(f"node_{id}")) % (2**32 - 1) # Ensure positive seed
|
36 |
+
key = random.PRNGKey(seed)
|
37 |
+
self.bias = float(random.normal(key, shape=()) * 0.1)
|
38 |
+
|
39 |
+
class ConnectionGene:
|
40 |
+
"""A gene representing a connection between nodes."""
|
41 |
+
def __init__(self, source: int, target: int, weight: float = None, enabled: bool = True):
|
42 |
+
self.source = source
|
43 |
+
self.target = target
|
44 |
+
self.enabled = enabled
|
45 |
+
self.innovation = hash((source, target))
|
46 |
+
|
47 |
+
if weight is None:
|
48 |
+
# Use deterministic key generation
|
49 |
+
seed = abs(hash(f"conn_{source}_{target}")) % (2**32 - 1)
|
50 |
+
key = random.PRNGKey(seed)
|
51 |
+
weight = float(random.normal(key, shape=()) * 0.1)
|
52 |
+
self.weight = weight
|
53 |
+
|
54 |
+
class Genome:
|
55 |
+
def __init__(self, n_inputs: int, n_outputs: int):
|
56 |
+
# Create input nodes (0 to n_inputs-1)
|
57 |
+
self.node_genes = {i: NodeGene(i, 'input') for i in range(n_inputs)}
|
58 |
+
|
59 |
+
# Create exactly 3 output nodes for left, right, jump
|
60 |
+
n_outputs = 3 # Force exactly 3 outputs
|
61 |
+
for i in range(n_outputs):
|
62 |
+
self.node_genes[n_inputs + i] = NodeGene(n_inputs + i, 'output')
|
63 |
+
|
64 |
+
self.connection_genes: List[ConnectionGene] = []
|
65 |
+
|
66 |
+
# Initialize with randomized connections using unique keys
|
67 |
+
seed = int(time.time() * 1000) % (2**32 - 1)
|
68 |
+
master_key = random.PRNGKey(seed)
|
69 |
+
|
70 |
+
# Add direct connections with random weights
|
71 |
+
for i in range(n_inputs):
|
72 |
+
for j in range(n_outputs):
|
73 |
+
master_key, key = random.split(master_key)
|
74 |
+
if random.uniform(key, shape=()) < 0.7: # 70% chance of connection
|
75 |
+
master_key, key = random.split(master_key)
|
76 |
+
weight = float(random.normal(key, shape=()) * 0.5) # Larger initial weights
|
77 |
+
self.connection_genes.append(
|
78 |
+
ConnectionGene(i, n_inputs + j, weight=weight)
|
79 |
+
)
|
80 |
+
|
81 |
+
# Add hidden nodes with random connections
|
82 |
+
master_key, key = random.split(master_key)
|
83 |
+
n_hidden = int(random.randint(key, (), 1, 4)) # Random number of hidden nodes
|
84 |
+
hidden_start = n_inputs + n_outputs
|
85 |
+
|
86 |
+
for i in range(n_hidden):
|
87 |
+
node_id = hidden_start + i
|
88 |
+
self.node_genes[node_id] = NodeGene(node_id, 'hidden')
|
89 |
+
|
90 |
+
# Connect random inputs to this hidden node
|
91 |
+
for j in range(n_inputs):
|
92 |
+
master_key, key = random.split(master_key)
|
93 |
+
if random.uniform(key, shape=()) < 0.5:
|
94 |
+
master_key, key = random.split(master_key)
|
95 |
+
weight = float(random.normal(key, shape=()) * 0.5)
|
96 |
+
self.connection_genes.append(
|
97 |
+
ConnectionGene(j, node_id, weight=weight)
|
98 |
+
)
|
99 |
+
|
100 |
+
# Connect this hidden node to random outputs
|
101 |
+
for j in range(n_outputs):
|
102 |
+
master_key, key = random.split(master_key)
|
103 |
+
if random.uniform(key, shape=()) < 0.5:
|
104 |
+
master_key, key = random.split(master_key)
|
105 |
+
weight = float(random.normal(key, shape=()) * 0.5)
|
106 |
+
self.connection_genes.append(
|
107 |
+
ConnectionGene(node_id, n_inputs + j, weight=weight)
|
108 |
+
)
|
109 |
+
|
110 |
+
def mutate(self, config: Dict):
|
111 |
+
seed = int(time.time() * 1000) % (2**32 - 1)
|
112 |
+
key = random.PRNGKey(seed)
|
113 |
+
|
114 |
+
# Mutate connection weights
|
115 |
+
for conn in self.connection_genes:
|
116 |
+
key, subkey = random.split(key)
|
117 |
+
if random.uniform(subkey, shape=()) < config['weight_mutation_rate']:
|
118 |
+
key, subkey = random.split(key)
|
119 |
+
# Sometimes reset weight completely
|
120 |
+
if random.uniform(subkey, shape=()) < 0.1:
|
121 |
+
key, subkey = random.split(key)
|
122 |
+
conn.weight = float(random.normal(subkey, shape=()) * 0.5)
|
123 |
+
else:
|
124 |
+
# Otherwise adjust existing weight
|
125 |
+
key, subkey = random.split(key)
|
126 |
+
conn.weight += float(random.normal(subkey) * config['weight_mutation_power'])
|
127 |
+
|
128 |
+
# Mutate node biases
|
129 |
+
for node in self.node_genes.values():
|
130 |
+
key, subkey = random.split(key)
|
131 |
+
if random.uniform(subkey, shape=()) < 0.1: # 10% chance to mutate bias
|
132 |
+
key, subkey = random.split(key)
|
133 |
+
node.bias += float(random.normal(subkey) * 0.1)
|
134 |
+
|
135 |
+
# Add new node
|
136 |
+
key, subkey = random.split(key)
|
137 |
+
if random.uniform(subkey, shape=()) < config['add_node_rate']:
|
138 |
+
if self.connection_genes:
|
139 |
+
# Choose random connection to split
|
140 |
+
conn = np.random.choice(self.connection_genes)
|
141 |
+
new_id = max(self.node_genes.keys()) + 1
|
142 |
+
|
143 |
+
# Create new node with random bias
|
144 |
+
self.node_genes[new_id] = NodeGene(new_id, 'hidden')
|
145 |
+
|
146 |
+
# Create two new connections with some randomization
|
147 |
+
key, subkey = random.split(key)
|
148 |
+
weight1 = float(random.normal(subkey, shape=()) * 0.5)
|
149 |
+
key, subkey = random.split(key)
|
150 |
+
weight2 = float(random.normal(subkey, shape=()) * 0.5)
|
151 |
+
|
152 |
+
self.connection_genes.append(
|
153 |
+
ConnectionGene(conn.source, new_id, weight=weight1)
|
154 |
+
)
|
155 |
+
self.connection_genes.append(
|
156 |
+
ConnectionGene(new_id, conn.target, weight=weight2)
|
157 |
+
)
|
158 |
+
|
159 |
+
# Disable old connection
|
160 |
+
conn.enabled = False
|
161 |
+
|
162 |
+
# Add new connection
|
163 |
+
key, subkey = random.split(key)
|
164 |
+
if random.uniform(subkey, shape=()) < config['add_connection_rate']:
|
165 |
+
# Get all possible nodes
|
166 |
+
nodes = list(self.node_genes.keys())
|
167 |
+
for _ in range(10): # Try 10 times to find valid connection
|
168 |
+
source = np.random.choice(nodes)
|
169 |
+
target = np.random.choice(nodes)
|
170 |
+
|
171 |
+
# Ensure forward propagation (source id < target id)
|
172 |
+
if source < target:
|
173 |
+
# Check if connection already exists
|
174 |
+
if not any(c.source == source and c.target == target
|
175 |
+
for c in self.connection_genes):
|
176 |
+
key, subkey = random.split(key)
|
177 |
+
weight = float(random.normal(subkey, shape=()) * 0.5)
|
178 |
+
self.connection_genes.append(
|
179 |
+
ConnectionGene(source, target, weight=weight)
|
180 |
+
)
|
181 |
+
break
|
182 |
+
|
183 |
+
class Network:
|
184 |
+
def __init__(self, genome: Genome):
|
185 |
+
self.genome = genome
|
186 |
+
# Sort nodes by ID to ensure consistent ordering
|
187 |
+
self.input_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'input'], key=lambda x: x.id)
|
188 |
+
self.hidden_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'hidden'], key=lambda x: x.id)
|
189 |
+
self.output_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'output'], key=lambda x: x.id)
|
190 |
+
|
191 |
+
# Verify we have exactly 3 output nodes
|
192 |
+
assert len(self.output_nodes) == 3, f"Expected 3 output nodes, got {len(self.output_nodes)}"
|
193 |
+
|
194 |
+
def forward(self, x: jnp.ndarray) -> jnp.ndarray:
|
195 |
+
# Ensure input is 2D with shape (batch_size, input_dim)
|
196 |
+
if len(x.shape) == 1:
|
197 |
+
x = jnp.expand_dims(x, 0)
|
198 |
+
|
199 |
+
batch_size = x.shape[0]
|
200 |
+
|
201 |
+
# Initialize node values
|
202 |
+
values = {}
|
203 |
+
for node in self.genome.node_genes.values():
|
204 |
+
values[node.id] = jnp.zeros((batch_size,))
|
205 |
+
values[node.id] = values[node.id] + node.bias
|
206 |
+
|
207 |
+
# Set input values
|
208 |
+
for i, node in enumerate(self.input_nodes):
|
209 |
+
values[node.id] = x[:, i]
|
210 |
+
|
211 |
+
# Process nodes in order
|
212 |
+
for node in self.hidden_nodes + self.output_nodes:
|
213 |
+
# Sum incoming connections
|
214 |
+
total = jnp.zeros((batch_size,))
|
215 |
+
total = total + node.bias
|
216 |
+
|
217 |
+
for conn in self.genome.connection_genes:
|
218 |
+
if conn.enabled and conn.target == node.id:
|
219 |
+
total = total + values[conn.source] * conn.weight
|
220 |
+
|
221 |
+
# Apply activation
|
222 |
+
values[node.id] = jnp.tanh(total)
|
223 |
+
|
224 |
+
# Get output values and ensure shape (batch_size, 3)
|
225 |
+
outputs = []
|
226 |
+
for node in self.output_nodes:
|
227 |
+
outputs.append(values[node.id])
|
228 |
+
|
229 |
+
# Stack along new axis to get (batch_size, 3)
|
230 |
+
return jnp.stack(outputs, axis=-1)
|
231 |
+
|
232 |
+
def evaluate_parallel(networks: List[Network], env: SlimeVolley, batch_size: int = 8) -> List[float]:
|
233 |
+
"""Evaluate multiple networks in parallel using JAX's vectorization."""
|
234 |
+
total_networks = len(networks)
|
235 |
+
fitness_scores = []
|
236 |
+
|
237 |
+
for i in range(0, total_networks, batch_size):
|
238 |
+
batch = networks[i:i + batch_size]
|
239 |
+
batch_size_actual = len(batch)
|
240 |
+
|
241 |
+
# Initialize environment states with proper key shape
|
242 |
+
seed = int(time.time() * 1000) % (2**32 - 1)
|
243 |
+
key = random.PRNGKey(seed)
|
244 |
+
states = env.reset(key)
|
245 |
+
total_rewards = np.zeros(batch_size_actual)
|
246 |
+
|
247 |
+
# Run episodes
|
248 |
+
for step in range(1000): # Max steps per episode
|
249 |
+
# Get observations and normalize
|
250 |
+
observations = states.obs / 10.0
|
251 |
+
|
252 |
+
# Get actions from all networks
|
253 |
+
actions = np.stack([
|
254 |
+
net.forward(obs[None, :])
|
255 |
+
for net, obs in zip(batch, observations)
|
256 |
+
])
|
257 |
+
|
258 |
+
# Convert to binary actions
|
259 |
+
thresholds = np.array([0.5, 0.5, 0.5])
|
260 |
+
binary_actions = (actions > thresholds).astype(np.float32)
|
261 |
+
|
262 |
+
# Step environment
|
263 |
+
key, subkey = random.split(key)
|
264 |
+
next_states, rewards, dones = env.step(states, binary_actions)
|
265 |
+
total_rewards += np.array([float(r) for r in rewards])
|
266 |
+
states = next_states
|
267 |
+
|
268 |
+
if np.all(dones):
|
269 |
+
break
|
270 |
+
|
271 |
+
fitness_scores.extend(list(total_rewards))
|
272 |
+
|
273 |
+
return fitness_scores
|
274 |
+
|
275 |
+
def create_next_generation(population: List[Network], fitness_scores: List[float], config: Dict):
|
276 |
+
"""Create the next generation of networks based on the current population and fitness scores."""
|
277 |
+
next_population = []
|
278 |
+
|
279 |
+
# Keep top 20% unchanged (less elitism = faster adaptation)
|
280 |
+
n_elite = max(2, int(0.2 * len(population)))
|
281 |
+
next_population.extend(population[:n_elite])
|
282 |
+
|
283 |
+
# Fill rest with mutated versions of top 50%
|
284 |
+
n_top = max(5, int(0.5 * len(population)))
|
285 |
+
while len(next_population) < len(population):
|
286 |
+
# Tournament selection with size 3 (smaller = faster)
|
287 |
+
tournament_size = 3
|
288 |
+
candidates = np.random.choice(population[:n_top], tournament_size, replace=False)
|
289 |
+
parent = max(candidates, key=lambda x: fitness_scores[population.index(x)])
|
290 |
+
|
291 |
+
child = Network(parent.genome)
|
292 |
+
child.genome.mutate(config)
|
293 |
+
next_population.append(child)
|
294 |
+
|
295 |
+
return next_population
|
296 |
+
|
297 |
+
def record_gameplay(network: Network, env: SlimeVolley, filename: str = 'gameplay.gif', max_steps: int = 1000):
|
298 |
+
"""Record a game played by the network and save it as a GIF."""
|
299 |
+
frames = []
|
300 |
+
|
301 |
+
# Initialize environment
|
302 |
+
seed = int(time.time() * 1000) % (2**32 - 1)
|
303 |
+
key = random.PRNGKey(seed)
|
304 |
+
state = env.reset(key)
|
305 |
+
done = False
|
306 |
+
steps = 0
|
307 |
+
|
308 |
+
while not done and steps < max_steps:
|
309 |
+
# Render current frame
|
310 |
+
frame = env.render(state)
|
311 |
+
frames.append(frame) # frame is already a PIL Image
|
312 |
+
|
313 |
+
# Get observation and normalize
|
314 |
+
obs = state.obs[None, :] / 10.0
|
315 |
+
|
316 |
+
# Get action from network
|
317 |
+
raw_action = network.forward(obs)
|
318 |
+
|
319 |
+
# Convert to binary actions
|
320 |
+
thresholds = jnp.array([0.5, 0.5, 0.5])
|
321 |
+
binary_action = (raw_action > thresholds).astype(jnp.float32)
|
322 |
+
|
323 |
+
# Prevent simultaneous left/right
|
324 |
+
both_active = jnp.logical_and(binary_action[:, 0] > 0, binary_action[:, 1] > 0)
|
325 |
+
prefer_left = raw_action[:, 0] > raw_action[:, 1]
|
326 |
+
|
327 |
+
binary_action = binary_action.at[:, 0].set(
|
328 |
+
jnp.where(both_active, prefer_left.astype(jnp.float32), binary_action[:, 0])
|
329 |
+
)
|
330 |
+
binary_action = binary_action.at[:, 1].set(
|
331 |
+
jnp.where(both_active, (~prefer_left).astype(jnp.float32), binary_action[:, 1])
|
332 |
+
)
|
333 |
+
|
334 |
+
# Step environment
|
335 |
+
key, subkey = random.split(key) # Get new key for each step
|
336 |
+
state, reward, done = env.step(state, binary_action) # Already batched
|
337 |
+
steps += 1
|
338 |
+
|
339 |
+
# Save as GIF
|
340 |
+
if frames:
|
341 |
+
frames[0].save(
|
342 |
+
filename,
|
343 |
+
save_all=True,
|
344 |
+
append_images=frames[1:],
|
345 |
+
duration=50, # 20 fps
|
346 |
+
loop=0
|
347 |
+
)
|
348 |
+
print(f"Gameplay recorded and saved to {filename}")
|
349 |
+
else:
|
350 |
+
print("No frames were recorded")
|
351 |
+
|
352 |
+
def main():
|
353 |
+
"""Main training loop with hardware acceleration when available."""
|
354 |
+
# Initialize environment
|
355 |
+
env = SlimeVolley(max_steps=1000)
|
356 |
+
|
357 |
+
# Configuration for evolution
|
358 |
+
config = {
|
359 |
+
'population_size': 64,
|
360 |
+
'batch_size': 8, # Smaller batch size for better compatibility
|
361 |
+
'weight_mutation_rate': 0.95,
|
362 |
+
'weight_mutation_power': 4.0,
|
363 |
+
'add_node_rate': 0.0,
|
364 |
+
'add_connection_rate': 0.0,
|
365 |
+
}
|
366 |
+
|
367 |
+
print("\nTraining Configuration:")
|
368 |
+
print(f"Population Size: {config['population_size']}")
|
369 |
+
print(f"Batch Size: {config['batch_size']}")
|
370 |
+
print(f"Mutation Rate: {config['weight_mutation_rate']}")
|
371 |
+
print("-" * 40)
|
372 |
+
|
373 |
+
# Create initial population
|
374 |
+
population = [
|
375 |
+
Network(Genome(n_inputs=12, n_outputs=3))
|
376 |
+
for _ in range(config['population_size'])
|
377 |
+
]
|
378 |
+
|
379 |
+
best_fitness = float('-inf')
|
380 |
+
best_network = None
|
381 |
+
|
382 |
+
# Evolution loop
|
383 |
+
for generation in range(1000):
|
384 |
+
start_time = time.time()
|
385 |
+
print(f"\nGeneration {generation}")
|
386 |
+
|
387 |
+
# Evaluate population in batches
|
388 |
+
fitness_scores = evaluate_parallel(
|
389 |
+
population,
|
390 |
+
env,
|
391 |
+
batch_size=config['batch_size']
|
392 |
+
)
|
393 |
+
|
394 |
+
# Track best network
|
395 |
+
max_fitness = max(fitness_scores)
|
396 |
+
if max_fitness > best_fitness:
|
397 |
+
best_idx = fitness_scores.index(max_fitness)
|
398 |
+
best_fitness = max_fitness
|
399 |
+
best_network = population[best_idx]
|
400 |
+
print(f"New best fitness: {best_fitness:.2f}")
|
401 |
+
|
402 |
+
# Record gameplay for significant improvements
|
403 |
+
if max_fitness > best_fitness + 2.0:
|
404 |
+
record_gameplay(best_network, env, f"best_gen_{generation}.gif")
|
405 |
+
|
406 |
+
# Early stopping
|
407 |
+
if best_fitness > 8.0:
|
408 |
+
print(f"Target fitness reached: {best_fitness:.2f}")
|
409 |
+
break
|
410 |
+
|
411 |
+
# Create next generation
|
412 |
+
population = create_next_generation(
|
413 |
+
population,
|
414 |
+
fitness_scores,
|
415 |
+
config
|
416 |
+
)
|
417 |
+
|
418 |
+
# Print stats every 5 generations
|
419 |
+
if generation % 5 == 0:
|
420 |
+
gen_time = time.time() - start_time
|
421 |
+
print(f"\nGeneration {generation} Stats:")
|
422 |
+
print(f"Best Fitness: {max_fitness:.2f}")
|
423 |
+
print(f"Average Fitness: {np.mean(fitness_scores):.2f}")
|
424 |
+
print(f"Generation Time: {gen_time:.2f}s")
|
425 |
+
|
426 |
+
print("\nTraining complete!")
|
427 |
+
print(f"Best fitness achieved: {best_fitness:.2f}")
|
428 |
+
|
429 |
+
# Save final network
|
430 |
+
if best_network:
|
431 |
+
record_gameplay(best_network, env, "final_gameplay.gif")
|
432 |
+
|
433 |
+
if __name__ == '__main__':
|
434 |
+
main()
|