eyad-silx commited on
Commit
0232428
·
verified ·
1 Parent(s): 2131369

Upload neat\visualization.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. neat//visualization.py +183 -0
neat//visualization.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Visualization utilities for NEAT networks."""
2
+
3
+ import matplotlib.pyplot as plt
4
+ import networkx as nx
5
+ import numpy as np
6
+ import jax.numpy as jnp
7
+ from typing import List, Dict, Any
8
+ from .network import Network
9
+
10
+ def plot_network_structure(network: Network, title: str = "Network Structure",
11
+ save_path: str = None, show: bool = True) -> None:
12
+ """Plot network structure using networkx.
13
+
14
+ Args:
15
+ network: Network to visualize
16
+ title: Plot title
17
+ save_path: Path to save plot to
18
+ show: Whether to display plot
19
+ """
20
+ # Create graph
21
+ G = nx.DiGraph()
22
+
23
+ # Add nodes
24
+ input_nodes = network.get_input_nodes()
25
+ hidden_nodes = network.get_hidden_nodes()
26
+ output_nodes = network.get_output_nodes()
27
+
28
+ # Position nodes in layers
29
+ pos = {}
30
+
31
+ # Input layer
32
+ for i, node in enumerate(input_nodes):
33
+ G.add_node(node, layer='input')
34
+ pos[node] = (0, (i - len(input_nodes)/2) / max(1, len(input_nodes)-1))
35
+
36
+ # Hidden layer
37
+ for i, node in enumerate(hidden_nodes):
38
+ G.add_node(node, layer='hidden')
39
+ pos[node] = (1, (i - len(hidden_nodes)/2) / max(1, len(hidden_nodes)-1))
40
+
41
+ # Output layer
42
+ for i, node in enumerate(output_nodes):
43
+ G.add_node(node, layer='output')
44
+ pos[node] = (2, (i - len(output_nodes)/2) / max(1, len(output_nodes)-1))
45
+
46
+ # Add edges with weights
47
+ connections = network.get_connections()
48
+ for src, dst, weight in connections:
49
+ # Convert JAX array to NumPy float
50
+ if isinstance(weight, jnp.ndarray):
51
+ weight = float(weight)
52
+ G.add_edge(src, dst, weight=weight)
53
+
54
+ # Draw network
55
+ plt.figure(figsize=(8, 6))
56
+
57
+ # Draw nodes
58
+ node_colors = ['lightblue' if G.nodes[n]['layer'] == 'input' else
59
+ 'lightgreen' if G.nodes[n]['layer'] == 'hidden' else
60
+ 'salmon' for n in G.nodes()]
61
+ nx.draw_networkx_nodes(G, pos, node_color=node_colors)
62
+
63
+ # Draw edges with weights as colors
64
+ edges = G.edges()
65
+ weights = [G[u][v]['weight'] for u, v in edges]
66
+
67
+ # Normalize weights for coloring
68
+ max_weight = max(abs(min(weights)), abs(max(weights)))
69
+ if max_weight > 0:
70
+ norm_weights = [(w + max_weight)/(2*max_weight) for w in weights]
71
+ else:
72
+ norm_weights = [0.5] * len(weights) # Default to middle color if all weights are 0
73
+
74
+ nx.draw_networkx_edges(G, pos, edge_color=norm_weights,
75
+ edge_cmap=plt.cm.RdYlBu, width=2)
76
+
77
+ # Add labels
78
+ labels = {n: str(n) for n in G.nodes()}
79
+ nx.draw_networkx_labels(G, pos, labels)
80
+
81
+ plt.title(title)
82
+ plt.axis('off')
83
+
84
+ if save_path:
85
+ plt.savefig(save_path)
86
+
87
+ if show:
88
+ plt.show()
89
+ else:
90
+ plt.close()
91
+
92
+ def plot_decision_boundary(network: Network, X: np.ndarray, y: np.ndarray,
93
+ title: str = "Decision Boundary",
94
+ save_path: str = None, show: bool = True) -> None:
95
+ """Plot decision boundary for 2D classification problem.
96
+
97
+ Args:
98
+ network: Trained network
99
+ X: Input data (n_samples, 2)
100
+ y: Labels
101
+ title: Plot title
102
+ save_path: Path to save plot to
103
+ show: Whether to display plot
104
+ """
105
+ # Convert JAX arrays to NumPy
106
+ if isinstance(X, jnp.ndarray):
107
+ X = np.array(X)
108
+ if isinstance(y, jnp.ndarray):
109
+ y = np.array(y)
110
+
111
+ # Create mesh grid
112
+ h = 0.02 # Step size
113
+ x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
114
+ y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
115
+ xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
116
+ np.arange(y_min, y_max, h))
117
+
118
+ # Make predictions on mesh
119
+ mesh_points = np.c_[xx.ravel(), yy.ravel()]
120
+ Z = network.predict(mesh_points)
121
+ if isinstance(Z, jnp.ndarray):
122
+ Z = np.array(Z)
123
+ Z = Z.reshape(xx.shape)
124
+
125
+ # Plot decision boundary
126
+ plt.figure(figsize=(8, 6))
127
+ plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu_r, alpha=0.3)
128
+
129
+ # Plot training points
130
+ plt.scatter(X[:, 0], X[:, 1], c=y,
131
+ cmap=plt.cm.RdYlBu_r,
132
+ alpha=0.6,
133
+ edgecolors='gray')
134
+ plt.xlim(xx.min(), xx.max())
135
+ plt.ylim(yy.min(), yy.max())
136
+
137
+ plt.title(title)
138
+
139
+ if save_path:
140
+ plt.savefig(save_path)
141
+
142
+ if show:
143
+ plt.show()
144
+ else:
145
+ plt.close()
146
+
147
+ def plot_training_history(history: Dict[str, List[float]],
148
+ title: str = "Training History",
149
+ save_path: str = None, show: bool = True) -> None:
150
+ """Plot training history metrics.
151
+
152
+ Args:
153
+ history: Dictionary of metrics
154
+ title: Plot title
155
+ save_path: Path to save plot to
156
+ show: Whether to display plot
157
+ """
158
+ plt.figure(figsize=(10, 6))
159
+
160
+ # Convert JAX arrays to NumPy if needed
161
+ plot_history = {}
162
+ for metric, values in history.items():
163
+ if isinstance(values[0], jnp.ndarray):
164
+ plot_history[metric] = [float(v) for v in values]
165
+ else:
166
+ plot_history[metric] = values
167
+
168
+ for metric, values in plot_history.items():
169
+ plt.plot(values, label=metric)
170
+
171
+ plt.title(title)
172
+ plt.xlabel('Generation')
173
+ plt.ylabel('Value')
174
+ plt.legend()
175
+ plt.grid(True)
176
+
177
+ if save_path:
178
+ plt.savefig(save_path)
179
+
180
+ if show:
181
+ plt.show()
182
+ else:
183
+ plt.close()