File size: 12,664 Bytes
61162bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""Train BackpropNEAT on Spiral dataset."""

import numpy as np
import matplotlib.pyplot as plt
import jax.numpy as jnp
import jax
import os
import json
from datetime import datetime
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle

from neat.backprop_neat import BackpropNEAT
from neat.datasets import generate_spiral_dataset
from neat.network import Network
from neat.genome import Genome

class NetworkLogger:
    """Logger for tracking network evolution."""
    
    def __init__(self, output_dir: str):
        self.output_dir = output_dir
        self.log_file = os.path.join(output_dir, "evolution_log.json")
        self.history = []
    
    def log_network(self, epoch: int, network, loss: float, accuracy: float):
        """Log network state."""
        network_state = {
            'epoch': epoch,
            'loss': float(loss),
            'accuracy': float(accuracy),
            'n_nodes': network.genome.n_nodes,
            'n_connections': len(network.genome.connections),
            'complexity_score': self.calculate_complexity(network),
            'structure': self.get_network_structure(network),
            'timestamp': datetime.now().isoformat()
        }
        self.history.append(network_state)
        
        # Save to file
        with open(self.log_file, 'w') as f:
            json.dump(self.history, f, indent=2)
    
    def calculate_complexity(self, network):
        """Calculate network complexity score."""
        n_nodes = network.genome.n_nodes
        n_connections = len(network.genome.connections)
        return n_nodes * 0.5 + n_connections
    
    def get_network_structure(self, network):
        """Get detailed network structure."""
        connections = []
        for (src, dst), weight in network.genome.connections.items():
            connections.append({
                'source': int(src),
                'target': int(dst),
                'weight': float(weight)
            })
        return {
            'input_size': network.genome.input_size,
            'output_size': network.genome.output_size,
            'hidden_nodes': network.genome.n_nodes - network.genome.input_size - network.genome.output_size,
            'connections': connections
        }
    
    def plot_evolution(self, save_path: str):
        """Plot network evolution metrics."""
        epochs = [log['epoch'] for log in self.history]
        accuracies = [log['accuracy'] for log in self.history]
        complexities = [log['complexity_score'] for log in self.history]
        losses = [log['loss'] for log in self.history]
        
        fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 12))
        
        # Plot accuracy
        ax1.plot(epochs, accuracies, 'b-', label='Accuracy')
        ax1.set_ylabel('Accuracy')
        ax1.set_title('Network Evolution')
        ax1.grid(True)
        ax1.legend()
        
        # Plot complexity
        ax2.plot(epochs, complexities, 'r-', label='Complexity Score')
        ax2.set_ylabel('Complexity Score')
        ax2.grid(True)
        ax2.legend()
        
        # Plot loss
        ax3.plot(epochs, losses, 'g-', label='Loss')
        ax3.set_ylabel('Loss')
        ax3.set_xlabel('Epoch')
        ax3.grid(True)
        ax3.legend()
        
        plt.tight_layout()
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        plt.close()

def visualize_dataset(X, y, network=None, title=None, save_path=None):
    """Visualize dataset with decision boundary."""
    plt.figure(figsize=(10, 8))
    
    if network is not None:
        # Create mesh grid
        x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
        y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                           np.linspace(y_min, y_max, 100))
        
        # Make predictions
        X_mesh = jnp.array(np.c_[xx.ravel(), yy.ravel()], dtype=jnp.float32)
        Z = network.predict(X_mesh)
        Z = Z.reshape(xx.shape)
        
        # Plot decision boundary
        plt.contourf(xx, yy, Z, alpha=0.4, cmap='RdYlBu')
    
    plt.scatter(X[y == 1, 0], X[y == 1, 1], c='red', label='Class 1')
    plt.scatter(X[y == -1, 0], X[y == -1, 1], c='blue', label='Class -1')
    plt.grid(True)
    plt.legend()
    plt.title(title or 'Dataset')
    plt.xlabel('X1')
    plt.ylabel('X2')
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"Saved plot to {save_path}")
    else:
        plt.show()
    plt.close()

def train_network(network, X, y, n_epochs=300, batch_size=32, patience=50):
    """Train a single network."""
    print("Starting network training...")
    print(f"Input shape: {X.shape}, Output shape: {y.shape}")
    print(f"Network params: {network.params['weights'].keys()}")
    
    n_samples = len(X)
    n_batches = n_samples // batch_size
    best_accuracy = 0.0
    patience_counter = 0
    best_params = None
    
    # Convert to JAX arrays
    print("Converting to JAX arrays...")
    X = jnp.array(X, dtype=jnp.float32)
    y = jnp.array(y, dtype=jnp.float32)
    
    # Learning rate schedule
    base_lr = 0.01
    warmup_epochs = 5
    
    print(f"\nTraining for {n_epochs} epochs with {n_batches} batches per epoch")
    print(f"Batch size: {batch_size}, Patience: {patience}")
    
    for epoch in range(n_epochs):
        try:
            # Shuffle data
            perm = np.random.permutation(n_samples)
            X = X[perm]
            y = y[perm]
            
            # Adjust learning rate with warmup and cosine decay
            if epoch < warmup_epochs:
                lr = base_lr * (epoch + 1) / warmup_epochs
            else:
                # Cosine decay with restarts
                cycle_length = 50
                cycle = (epoch - warmup_epochs) // cycle_length
                t = (epoch - warmup_epochs) % cycle_length
                lr = base_lr * 0.5 * (1 + np.cos(t * np.pi / cycle_length))
                # Add small restart bump every cycle
                if t == 0:
                    lr = base_lr * (0.9 ** cycle)
            
            epoch_loss = 0.0
            
            # Train on mini-batches
            for i in range(n_batches):
                start_idx = i * batch_size
                end_idx = start_idx + batch_size
                X_batch = X[start_idx:end_idx]
                y_batch = y[start_idx:end_idx]
                
                try:
                    # Update network parameters
                    network.params, loss = network._train_step(
                        network.params, 
                        X_batch, 
                        y_batch
                    )
                    epoch_loss += loss
                except Exception as e:
                    print(f"Error in batch {i}: {str(e)}")
                    print(f"X_batch shape: {X_batch.shape}, y_batch shape: {y_batch.shape}")
                    raise e
            
            # Compute training accuracy
            predictions = network.predict(X)
            train_accuracy = np.mean((predictions > 0) == (y > 0))
            
            # Early stopping check
            if train_accuracy > best_accuracy:
                best_accuracy = train_accuracy
                best_params = {k: v.copy() for k, v in network.params.items()}
                patience_counter = 0
            else:
                patience_counter += 1
            
            # Print progress every epoch
            print(f"Epoch {epoch}: Train Acc = {train_accuracy:.4f}, Loss = {epoch_loss/n_batches:.4f}, LR = {lr:.6f}")
            
            # Early stopping
            if patience_counter >= patience:
                print(f"Early stopping at epoch {epoch}")
                break
                
        except Exception as e:
            print(f"Error in epoch {epoch}: {str(e)}")
            raise e
    
    # Restore best parameters
    if best_params is not None:
        network.params = best_params
        print(f"\nRestored best parameters with accuracy: {best_accuracy:.4f}")
    
    return best_accuracy

def plot_decision_boundary(network, X, y, save_path):
    """Plot decision boundary with multiple views."""
    fig, axes = plt.subplots(2, 2, figsize=(15, 15))
    
    # Cartesian View
    x_min, x_max = X[:, 0].min() - 0.1, X[:, 0].max() + 0.1
    y_min, y_max = X[:, 1].min() - 0.1, X[:, 1].max() + 0.1
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                       np.linspace(y_min, y_max, 100))
    
    # Create all features for prediction
    r = np.sqrt(xx**2 + yy**2)
    theta = np.arctan2(yy, xx)
    theta = np.unwrap(theta)
    dr_dtheta = r / theta
    
    # Normalize features
    x_norm = xx.ravel() / np.max(np.abs(X[:, 0]))
    y_norm = yy.ravel() / np.max(np.abs(X[:, 1]))
    r_norm = r.ravel() / np.max(X[:, 2] * np.max(np.abs(X[:, 0])))
    theta_norm = theta.ravel() / (6 * np.pi)
    dr_norm = dr_dtheta.ravel() / np.max(np.abs(X[:, 4]))
    
    # Make predictions
    X_mesh = jnp.array(np.column_stack([
        x_norm, y_norm, r_norm, theta_norm, dr_norm
    ]), dtype=jnp.float32)
    Z = network.predict(X_mesh)
    Z = Z.reshape(xx.shape)
    
    # Plot Cartesian view
    axes[0,0].contourf(xx, yy, Z, alpha=0.4, cmap='RdYlBu')
    axes[0,0].scatter(X[:, 0] * np.max(np.abs(X[:, 0])), 
                     X[:, 1] * np.max(np.abs(X[:, 1])), 
                     c=['red' if label == 1 else 'blue' for label in y],
                     alpha=0.6)
    axes[0,0].set_title('Cartesian View')
    axes[0,0].grid(True)
    
    # Plot Polar view (θ vs r)
    axes[0,1].scatter(X[:, 3] * 6 * np.pi,  # Denormalize theta
                     X[:, 2] * np.max(np.abs(X[:, 0])),  # Denormalize radius
                     c=['red' if label == 1 else 'blue' for label in y],
                     alpha=0.6)
    axes[0,1].set_title('Polar View (θ vs r)')
    axes[0,1].grid(True)
    
    # Plot dr/dθ vs θ
    axes[1,0].scatter(X[:, 3] * 6 * np.pi,  # theta
                     X[:, 4] * np.max(np.abs(X[:, 4])),  # dr/dtheta
                     c=['red' if label == 1 else 'blue' for label in y],
                     alpha=0.6)
    axes[1,0].set_title('Spiral Tightness (dr/dθ vs θ)')
    axes[1,0].grid(True)
    
    # Plot r vs dr/dθ
    axes[1,1].scatter(X[:, 4] * np.max(np.abs(X[:, 4])),  # dr/dtheta
                     X[:, 2] * np.max(np.abs(X[:, 0])),  # radius
                     c=['red' if label == 1 else 'blue' for label in y],
                     alpha=0.6)
    axes[1,1].set_title('Growth Rate (r vs dr/dθ)')
    axes[1,1].grid(True)
    
    plt.tight_layout()
    plt.savefig(save_path, dpi=300, bbox_inches='tight')
    plt.close()

def main():
    """Main training loop."""
    print("\nTraining on Spiral dataset...")
    
    # Generate spiral dataset
    X, y = generate_spiral_dataset(n_points=1000, noise=0.1)
    
    # Split data
    X_train, X_val, y_train, y_val = train_test_split(
        X, y, test_size=0.2, random_state=42
    )
    
    # Initialize BackpropNEAT with smaller network
    n_features = X.shape[1]
    neat = BackpropNEAT(
        n_inputs=n_features,
        n_outputs=1,
        n_hidden=32,  # Reduced hidden layer size
        population_size=5,
        learning_rate=0.01,
        beta=0.9
    )
    
    # Training parameters
    n_epochs = 300
    batch_size = 32
    patience = 30  # Reduced patience
    
    # Train each network in the population
    best_network = None
    best_val_acc = 0.0
    
    for i, network in enumerate(neat.population):
        print(f"\nTraining network {i+1}/{len(neat.population)}...")
        
        # Train network
        train_accuracy = train_network(
            network, 
            X_train, 
            y_train, 
            n_epochs=n_epochs,
            batch_size=batch_size,
            patience=patience
        )
        
        # Evaluate on validation set
        val_preds = network.predict(X_val)
        val_accuracy = np.mean((val_preds > 0) == (y_val > 0))
        
        print(f"Network {i+1} - Train Acc: {train_accuracy:.4f}, Val Acc: {val_accuracy:.4f}")
        
        # Update best network
        if val_accuracy > best_val_acc:
            best_val_acc = val_accuracy
            best_network = network
    
    # Plot decision boundary for best network
    if best_network is not None:
        plot_path = "spiral_decision_boundary.png"
        plot_decision_boundary(best_network, X, y, plot_path)
        print(f"\nDecision boundary plot saved to {plot_path}")

if __name__ == "__main__":
    main()