Vision-CAIR's picture
Update longvu/multimodal_encoder/dino_encoder.py
02d5780 verified
import torch
import torch.nn.functional as F
from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model
from .base_encoder import BaseVisionTower, ProcessorWrapper
class DinoVisionTower(BaseVisionTower):
def __init__(self, vision_tower, args, delay_load=False):
super(DinoVisionTower, self).__init__(vision_tower, args, delay_load)
model_path = "facebook/dinov2-giant"
base_model_name, res, interp = model_path, 378, 576
self._vision_tower_name = vision_tower
self.vision_tower_name = base_model_name
self._image_size = res
self._interp_size = interp
self._patch_size = 14 # default patch size
if not self.delay_load:
self.load_model()
else:
self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name)
def load_model(self, device_map=None):
self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name)
"""ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute."""
self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"]
_image_size = self.vision_tower.config.image_size
if self._image_size is None:
self._image_size = _image_size
# increase shortest edge to prevent edge case crops
default_shortest_ratio = 8 / 7 # 224/256
# shortest_edge = int(default_shortest_ratio * self._image_size)
shortest_edge = self._image_size
processor = AutoImageProcessor.from_pretrained(
self.vision_tower_name,
crop_size=dict(height=self._image_size, width=self._image_size),
size=dict(shortest_edge=shortest_edge),
)
self.image_processor = processor
# Assign the output channels of the projection convolution as the hidden size
self._hidden_size = (
self.vision_tower.embeddings.patch_embeddings.projection.out_channels
)
# Assign the first value of the stride of the projection convolution as the patch size
self._patch_size = (
self.vision_tower.embeddings.patch_embeddings.projection.stride[0]
)
# print(self._hidden_size, self._patch_size)
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
self.is_loaded = True
@property
def image_size(self):
return self._image_size
def feature_select(self, outputs):
sequence_output = outputs[
"last_hidden_state"
] # batch_size, sequence_length, hidden_size
if self.select_feature == "cls_patch":
image_features = sequence_output
elif self.select_feature == "patch":
image_features = sequence_output[:, 1:]
elif self.select_feature == "cls":
image_features = sequence_output[:, 0]
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
def interpolate(self, image_features):
if self._interp_size is None:
return image_features
b, num_tokens, dim = image_features.shape
if num_tokens != self.num_patches:
target_h = target_w = int(self._interp_size**0.5)
h = w = int(num_tokens**0.5)
image_features = image_features.view(b, h, w, dim)
image_features = image_features.permute(0, 3, 1, 2).contiguous()
image_features = F.interpolate(
image_features.to(torch.float32),
size=(target_h, target_w),
mode="bilinear",
align_corners=False,
).to(image_features.dtype)
# Permute the dimensions back to (b, target_h, target_w, dim)
image_features = image_features.permute(0, 2, 3, 1).contiguous()
# Flatten the spatial dimensions (target_h, target_w) into a single dimension
image_features = image_features.flatten(1, 2)
return image_features
def _forward(self, images):
# logger.warning(f"images shape: {images.shape}")
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
image_forward_outs = self.vision_tower.forward(
images.to(device=self.device, dtype=self.dtype)
)
# logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}")
image_features = self.feature_select(image_forward_outs).to(images.dtype)
# logger.warning(f"image_features shape: {image_features.shape}")
interp_features = self.interpolate(image_features)
# logger.warning(f"interp_features shape: {interp_features.shape}")
return interp_features
@property
def num_patches_per_side(self):
return int(self.num_patches**0.5)
@property
def num_patches(self):
if self._interp_size is None:
return (self._image_size // self._patch_size) ** 2
else:
return self._interp_size