Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------ | |
# Copyright (c) 2023-present, BAAI. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------ | |
# pyre-unsafe | |
"""Image utilities.""" | |
import numpy as np | |
import PIL.Image | |
import torch | |
def im_resize(img, size=None, scale=None, mode="linear"): | |
"""Resize image by the scale or size.""" | |
if size is None: | |
if not isinstance(scale, (tuple, list)): | |
scale = (scale, scale) | |
h, w = img.shape[:2] | |
size = int(h * scale[0] + 0.5), int(w * scale[1] + 0.5) | |
else: | |
if not isinstance(size, (tuple, list)): | |
size = (size, size) | |
resize_modes = {"linear": PIL.Image.BILINEAR} | |
from torchvision.transforms import ToPILImage | |
to_pil = ToPILImage() | |
img = to_pil(img.to(torch.float32).cpu()) | |
# img = PIL.Image.fromarray(img) | |
return np.array(img.resize(size[::-1], resize_modes[mode])) | |
def im_rescale(img, scales, max_size=0): | |
"""Rescale image to match the detecting scales.""" | |
im_shape = img.shape | |
img_list, img_scales = [], [] | |
size_min = np.min(im_shape[:2]) | |
size_max = np.max(im_shape[:2]) | |
for target_size in scales: | |
im_scale = float(target_size) / float(size_min) | |
target_size_max = max_size if max_size > 0 else target_size | |
if np.round(im_scale * size_max) > target_size_max: | |
im_scale = float(target_size_max) / float(size_max) | |
img_list.append(im_resize(img, scale=im_scale)) | |
img_scales.append((im_scale, im_scale)) | |
return img_list, img_scales | |
def im_vstack(arrays, fill_value=None, dtype=None, size=None, align=None): | |
"""Stack image arrays in sequence vertically.""" | |
if fill_value is None: | |
return np.vstack(arrays) | |
# Compute the max stack shape. | |
max_shape = np.max(np.stack([arr.shape for arr in arrays]), 0) | |
if size is not None and min(size) > 0: | |
max_shape[: len(size)] = size | |
if align is not None and min(align) > 0: | |
align_size = np.ceil(max_shape[: len(align)] / align) | |
max_shape[: len(align)] = align_size.astype("int64") * align | |
# Fill output with the given value. | |
output_dtype = dtype or arrays[0].dtype | |
output_shape = [len(arrays)] + list(max_shape) | |
output = np.empty(output_shape, output_dtype) | |
output[:] = fill_value | |
# Copy arrays. | |
for i, arr in enumerate(arrays): | |
copy_slices = (slice(0, d) for d in arr.shape) | |
output[(i,) + tuple(copy_slices)] = arr | |
return output | |