Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import CrossEntropyLoss | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
LlamaConfig, | |
LlamaForCausalLM, | |
LlamaModel, | |
) | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.generation.utils import GenerateOutput | |
from transformers.modeling_attn_mask_utils import ( | |
_prepare_4d_causal_attention_mask, | |
_prepare_4d_causal_attention_mask_for_sdpa, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
) | |
from transformers.utils import logging | |
from ..cambrian_arch import CambrianMetaForCausalLM, CambrianMetaModel | |
IS_XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) | |
class CambrianConfig(LlamaConfig): | |
model_type = "cambrian_llama" | |
debug = "debug" | |
class CambrianLlamaModel(CambrianMetaModel, LlamaModel): | |
config_class = CambrianConfig | |
def __init__(self, config: LlamaConfig): | |
super(CambrianLlamaModel, self).__init__(config) | |
def forward( | |
self, | |
# pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`. | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
vision_tower_aux_feature_list: Optional[List[torch.FloatTensor]] = None, | |
vision_tower_aux_attention_masks_list: Optional[List[torch.Tensor]] = None, | |
final_vision_feature_size: Optional[List[tuple]] = None, | |
global_context_feature: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `config`. | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape[:2] | |
elif inputs_embeds is not None: | |
batch_size, seq_length = inputs_embeds.shape[:2] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute | |
# `gradient_checkpointing`. | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `training`. | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
past_key_values_length = 0 | |
if use_cache: | |
use_legacy_cache = not isinstance(past_key_values, Cache) | |
if use_legacy_cache: | |
# pyre-fixme[9]: past_key_values has type | |
# `Optional[List[FloatTensor]]`; used as `DynamicCache`. | |
# pyre-fixme[6]: For 1st argument expected | |
# `Optional[Tuple[Tuple[FloatTensor]]]` but got | |
# `Optional[List[FloatTensor]]`. | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
# pyre-fixme[16]: `Optional` has no attribute `get_usable_length`. | |
past_key_values_length = past_key_values.get_usable_length(seq_length) | |
if position_ids is None: | |
# pyre-fixme[16]: `Optional` has no attribute `device`. | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0) | |
if inputs_embeds is None: | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `embed_tokens`. | |
inputs_embeds = self.embed_tokens(input_ids) | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute | |
# `_use_flash_attention_2`. | |
self._use_flash_attention_2 = getattr(self, "_use_flash_attention_2", False) | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `_use_sdpa`. | |
self._use_sdpa = getattr(self, "_use_sdpa", True) | |
if self._use_flash_attention_2: | |
# 2d mask is passed through the layers | |
attention_mask = ( | |
attention_mask | |
if (attention_mask is not None and 0 in attention_mask) | |
else None | |
) | |
elif self._use_sdpa and not output_attentions: | |
# output_attentions=True can not be supported when using SDPA, and we fall back on | |
# the manual implementation that requires a 4D causal mask in all cases. | |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
else: | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
# embed positions | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `layers`. | |
for i, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute | |
# `_gradient_checkpointing_func`. | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `norm`. | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = None | |
if use_cache: | |
next_cache = ( | |
next_decoder_cache.to_legacy_cache() | |
# pyre-fixme[61]: `use_legacy_cache` is undefined, or not always | |
# defined. | |
if use_legacy_cache | |
else next_decoder_cache | |
) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
if v is not None | |
) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class CambrianLlamaForCausalLM(LlamaForCausalLM, CambrianMetaForCausalLM): | |
config_class = CambrianConfig | |
def __init__(self, config): | |
super(LlamaForCausalLM, self).__init__(config) | |
self.model = CambrianLlamaModel(config) | |
self.pretraining_tp = config.pretraining_tp | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
# pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`. | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
image_aux_attention_masks_list: Optional[List[torch.Tensor]] = None, | |
image_sizes: Optional[List[List[int]]] = None, | |
return_dict: Optional[bool] = None, | |
cache_position=None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
final_vision_feature_size = None | |
if inputs_embeds is None: | |
( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
vision_tower_aux_feature_list, | |
vision_tower_aux_attention_masks_list, | |
final_vision_feature_size, | |
global_context_feature, | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
labels, | |
images, | |
image_aux_attention_masks_list, | |
image_sizes, | |
) | |
if IS_XLA_AVAILABLE: | |
# Very Important for TorchXLA | |
# self.model.gradient_checkpointing = False | |
# pyre-fixme[21]: Could not find module `torch_xla.utils.checkpoint`. | |
from torch_xla.utils.checkpoint import checkpoint | |
# self.model.gradient_checkpointing = True | |
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute | |
# `_gradient_checkpointing_func`. | |
self.model._gradient_checkpointing_func = checkpoint | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute `config`. | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# training | |
if IS_XLA_AVAILABLE: | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
# pyre-fixme[29]: `CambrianLlamaModel` is not a function. | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
# pyre-fixme[61]: `vision_tower_aux_feature_list` is undefined, or | |
# not always defined. | |
vision_tower_aux_feature_list=vision_tower_aux_feature_list, | |
# pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is | |
# undefined, or not always defined. | |
vision_tower_aux_attention_masks_list=vision_tower_aux_attention_masks_list, | |
final_vision_feature_size=final_vision_feature_size, | |
# pyre-fixme[61]: `global_context_feature` is undefined, or not | |
# always defined. | |
global_context_feature=global_context_feature, | |
) | |
# inference | |
else: | |
if hasattr(self, "vision_tower_aux_feature_list"): | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
# pyre-fixme[29]: `CambrianLlamaModel` is not a function. | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
vision_tower_aux_feature_list=( | |
# pyre-fixme[61]: `vision_tower_aux_feature_list` is | |
# undefined, or not always defined. | |
vision_tower_aux_feature_list | |
if inputs_embeds is None | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no | |
# attribute `vision_tower_aux_feature_list`. | |
else self.vision_tower_aux_feature_list | |
), | |
vision_tower_aux_attention_masks_list=( | |
# pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is | |
# undefined, or not always defined. | |
vision_tower_aux_attention_masks_list | |
if inputs_embeds is None | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no | |
# attribute `vision_tower_aux_attention_masks_list`. | |
else self.vision_tower_aux_attention_masks_list | |
), | |
final_vision_feature_size=( | |
final_vision_feature_size | |
if inputs_embeds is None | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no | |
# attribute `final_vision_feature_size`. | |
else self.final_vision_feature_size | |
), | |
global_context_feature=( | |
# pyre-fixme[61]: `global_context_feature` is undefined, or | |
# not always defined. | |
global_context_feature | |
if inputs_embeds is None | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no | |
# attribute `global_context_feature`. | |
else self.global_context_feature | |
), | |
) | |
else: | |
# pyre-fixme[29]: `CambrianLlamaModel` is not a function. | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
# final_vision_feature_size=final_vision_feature_size, | |
) | |
hidden_states = outputs[0] | |
if self.config.pretraining_tp > 1: | |
lm_head_slices = self.lm_head.weight.split( | |
self.vocab_size // self.config.pretraining_tp, dim=0 | |
) | |
logits = [ | |
F.linear(hidden_states, lm_head_slices[i]) | |
for i in range(self.config.pretraining_tp) | |
] | |
logits = torch.cat(logits, dim=-1) | |
else: | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
images: Optional[torch.Tensor] = None, | |
image_sizes: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if images is not None: | |
( | |
inputs, | |
position_ids, | |
attention_mask, | |
_, | |
inputs_embeds, | |
_, | |
vision_tower_aux_feature_list, | |
vision_tower_aux_attention_masks_list, | |
final_vision_feature_size, | |
global_context_feature, | |
) = self.prepare_inputs_labels_for_multimodal( | |
inputs, | |
position_ids, | |
attention_mask, | |
None, | |
None, | |
images, | |
image_sizes=image_sizes, | |
) | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute | |
# `vision_tower_aux_feature_list`. | |
self.vision_tower_aux_feature_list = vision_tower_aux_feature_list | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute | |
# `vision_tower_aux_attention_masks_list`. | |
self.vision_tower_aux_attention_masks_list = ( | |
vision_tower_aux_attention_masks_list | |
) | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute | |
# `final_vision_feature_size`. | |
self.final_vision_feature_size = final_vision_feature_size | |
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute | |
# `global_context_feature`. | |
self.global_context_feature = global_context_feature | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
# pyre-fixme[16]: `LlamaForCausalLM` has no attribute `generate`. | |
return super().generate( | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
**kwargs, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs | |
): | |
images = kwargs.pop("images", None) | |
image_sizes = kwargs.pop("image_sizes", None) | |
inputs = super().prepare_inputs_for_generation( | |
input_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
**kwargs, | |
) | |
if images is not None: | |
inputs["images"] = images | |
if image_sizes is not None: | |
inputs["image_sizes"] = image_sizes | |
return inputs | |
AutoConfig.register("cambrian_llama", CambrianConfig) | |
AutoModelForCausalLM.register(CambrianConfig, CambrianLlamaForCausalLM) | |