Spaces:
Running
Running
File size: 10,839 Bytes
9fb7d26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright 2022 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XTREME-S benchmark metric. """
from typing import List
import datasets
from datasets.config import PY_VERSION
from packaging import version
from sklearn.metrics import f1_score
import evaluate
if PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
# TODO(Patrick/Anton)
_CITATION = """\
"""
_DESCRIPTION = """\
XTREME-S is a benchmark to evaluate universal cross-lingual speech representations in many languages.
XTREME-S covers four task families: speech recognition, classification, speech-to-text translation and retrieval.
"""
_KWARGS_DESCRIPTION = """
Compute XTREME-S evaluation metric associated to each XTREME-S dataset.
Args:
predictions: list of predictions to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
bleu_kwargs: optional dict of keywords to be passed when computing 'bleu'.
Keywords include Dict can be one of 'smooth_method', 'smooth_value', 'force', 'lowercase',
'tokenize', 'use_effective_order'.
wer_kwargs: optional dict of keywords to be passed when computing 'wer' and 'cer'.
Keywords include 'concatenate_texts'.
Returns: depending on the XTREME-S task, one or several of:
"accuracy": Accuracy - for 'fleurs-lang_id', 'minds14'
"f1": F1 score - for 'minds14'
"wer": Word error rate - for 'mls', 'fleurs-asr', 'voxpopuli', 'babel'
"cer": Character error rate - for 'mls', 'fleurs-asr', 'voxpopuli', 'babel'
"bleu": BLEU score according to the `sacrebleu` metric - for 'covost2'
Examples:
>>> xtreme_s_metric = evaluate.load('xtreme_s', 'mls') # 'mls', 'voxpopuli', 'fleurs-asr' or 'babel'
>>> references = ["it is sunny here", "paper and pen are essentials"]
>>> predictions = ["it's sunny", "paper pen are essential"]
>>> results = xtreme_s_metric.compute(predictions=predictions, references=references)
>>> print({k: round(v, 2) for k, v in results.items()})
{'wer': 0.56, 'cer': 0.27}
>>> xtreme_s_metric = evaluate.load('xtreme_s', 'covost2')
>>> references = ["bonjour paris", "il est necessaire de faire du sport de temps en temp"]
>>> predictions = ["bonjour paris", "il est important de faire du sport souvent"]
>>> results = xtreme_s_metric.compute(predictions=predictions, references=references)
>>> print({k: round(v, 2) for k, v in results.items()})
{'bleu': 31.65}
>>> xtreme_s_metric = evaluate.load('xtreme_s', 'fleurs-lang_id')
>>> references = [0, 1, 0, 0, 1]
>>> predictions = [0, 1, 1, 0, 0]
>>> results = xtreme_s_metric.compute(predictions=predictions, references=references)
>>> print({k: round(v, 2) for k, v in results.items()})
{'accuracy': 0.6}
>>> xtreme_s_metric = evaluate.load('xtreme_s', 'minds14')
>>> references = [0, 1, 0, 0, 1]
>>> predictions = [0, 1, 1, 0, 0]
>>> results = xtreme_s_metric.compute(predictions=predictions, references=references)
>>> print({k: round(v, 2) for k, v in results.items()})
{'f1': 0.58, 'accuracy': 0.6}
"""
_CONFIG_NAMES = ["fleurs-asr", "mls", "voxpopuli", "babel", "covost2", "fleurs-lang_id", "minds14"]
SENTENCE_DELIMITER = ""
try:
from jiwer import transforms as tr
_jiwer_available = True
except ImportError:
_jiwer_available = False
if _jiwer_available and version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"):
class SentencesToListOfCharacters(tr.AbstractTransform):
def __init__(self, sentence_delimiter: str = " "):
self.sentence_delimiter = sentence_delimiter
def process_string(self, s: str):
return list(s)
def process_list(self, inp: List[str]):
chars = []
for sent_idx, sentence in enumerate(inp):
chars.extend(self.process_string(sentence))
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(inp) - 1:
chars.append(self.sentence_delimiter)
return chars
cer_transform = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
elif _jiwer_available:
cer_transform = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
else:
cer_transform = None
def simple_accuracy(preds, labels):
return float((preds == labels).mean())
def f1_and_simple_accuracy(preds, labels):
return {
"f1": float(f1_score(y_true=labels, y_pred=preds, average="macro")),
"accuracy": simple_accuracy(preds, labels),
}
def bleu(
preds,
labels,
smooth_method="exp",
smooth_value=None,
force=False,
lowercase=False,
tokenize=None,
use_effective_order=False,
):
# xtreme-s can only have one label
labels = [[label] for label in labels]
preds = list(preds)
try:
import sacrebleu as scb
except ImportError:
raise ValueError(
"sacrebleu has to be installed in order to apply the bleu metric for covost2."
"You can install it via `pip install sacrebleu`."
)
if version.parse(scb.__version__) < version.parse("1.4.12"):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
'You can install it with `pip install "sacrebleu>=1.4.12"`.'
)
references_per_prediction = len(labels[0])
if any(len(refs) != references_per_prediction for refs in labels):
raise ValueError("Sacrebleu requires the same number of references for each prediction")
transformed_references = [[refs[i] for refs in labels] for i in range(references_per_prediction)]
output = scb.corpus_bleu(
preds,
transformed_references,
smooth_method=smooth_method,
smooth_value=smooth_value,
force=force,
lowercase=lowercase,
use_effective_order=use_effective_order,
**(dict(tokenize=tokenize) if tokenize else {}),
)
return {"bleu": output.score}
def wer_and_cer(preds, labels, concatenate_texts, config_name):
try:
from jiwer import compute_measures
except ImportError:
raise ValueError(
f"jiwer has to be installed in order to apply the wer metric for {config_name}."
"You can install it via `pip install jiwer`."
)
if concatenate_texts:
wer = compute_measures(labels, preds)["wer"]
cer = compute_measures(labels, preds, truth_transform=cer_transform, hypothesis_transform=cer_transform)["wer"]
return {"wer": wer, "cer": cer}
else:
def compute_score(preds, labels, score_type="wer"):
incorrect = 0
total = 0
for prediction, reference in zip(preds, labels):
if score_type == "wer":
measures = compute_measures(reference, prediction)
elif score_type == "cer":
measures = compute_measures(
reference, prediction, truth_transform=cer_transform, hypothesis_transform=cer_transform
)
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
return {"wer": compute_score(preds, labels, "wer"), "cer": compute_score(preds, labels, "cer")}
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class XtremeS(evaluate.EvaluationModule):
def _info(self):
if self.config_name not in _CONFIG_NAMES:
raise KeyError(f"You should supply a configuration name selected in {_CONFIG_NAMES}")
pred_type = "int64" if self.config_name in ["fleurs-lang_id", "minds14"] else "string"
return evaluate.EvaluationModuleInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{"predictions": datasets.Value(pred_type), "references": datasets.Value(pred_type)}
),
codebase_urls=[],
reference_urls=[],
format="numpy",
)
def _compute(self, predictions, references, bleu_kwargs=None, wer_kwargs=None):
bleu_kwargs = bleu_kwargs if bleu_kwargs is not None else {}
wer_kwargs = wer_kwargs if wer_kwargs is not None else {}
if self.config_name == "fleurs-lang_id":
return {"accuracy": simple_accuracy(predictions, references)}
elif self.config_name == "minds14":
return f1_and_simple_accuracy(predictions, references)
elif self.config_name == "covost2":
smooth_method = bleu_kwargs.pop("smooth_method", "exp")
smooth_value = bleu_kwargs.pop("smooth_value", None)
force = bleu_kwargs.pop("force", False)
lowercase = bleu_kwargs.pop("lowercase", False)
tokenize = bleu_kwargs.pop("tokenize", None)
use_effective_order = bleu_kwargs.pop("use_effective_order", False)
return bleu(
preds=predictions,
labels=references,
smooth_method=smooth_method,
smooth_value=smooth_value,
force=force,
lowercase=lowercase,
tokenize=tokenize,
use_effective_order=use_effective_order,
)
elif self.config_name in ["fleurs-asr", "mls", "voxpopuli", "babel"]:
concatenate_texts = wer_kwargs.pop("concatenate_texts", False)
return wer_and_cer(predictions, references, concatenate_texts, self.config_name)
else:
raise KeyError(f"You should supply a configuration name selected in {_CONFIG_NAMES}")
|