Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Evaluate Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" SACREBLEU metric. """ | |
import datasets | |
import sacrebleu as scb | |
from packaging import version | |
import evaluate | |
_CITATION = """\ | |
@inproceedings{post-2018-call, | |
title = "A Call for Clarity in Reporting {BLEU} Scores", | |
author = "Post, Matt", | |
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", | |
month = oct, | |
year = "2018", | |
address = "Belgium, Brussels", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/W18-6319", | |
pages = "186--191", | |
} | |
""" | |
_DESCRIPTION = """\ | |
SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. | |
Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official WMT scores but works with plain text. | |
It also knows all the standard test sets and handles downloading, processing, and tokenization for you. | |
See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Produces BLEU scores along with its sufficient statistics | |
from a source against one or more references. | |
Args: | |
predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens. | |
references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length). | |
smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are: | |
- `'none'`: no smoothing | |
- `'floor'`: increment zero counts | |
- `'add-k'`: increment num/denom by k for n>1 | |
- `'exp'`: exponential decay | |
smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`). | |
tokenize (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are: | |
- `'none'`: No tokenization. | |
- `'zh'`: Chinese tokenization. | |
- `'13a'`: mimics the `mteval-v13a` script from Moses. | |
- `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses | |
- `'char'`: Language-agnostic character-level tokenization. | |
- `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3). | |
lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`. | |
force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`. | |
use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`. | |
Returns: | |
'score': BLEU score, | |
'counts': Counts, | |
'totals': Totals, | |
'precisions': Precisions, | |
'bp': Brevity penalty, | |
'sys_len': predictions length, | |
'ref_len': reference length, | |
Examples: | |
Example 1: | |
>>> predictions = ["hello there general kenobi", "foo bar foobar"] | |
>>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]] | |
>>> sacrebleu = evaluate.load("sacrebleu") | |
>>> results = sacrebleu.compute(predictions=predictions, references=references) | |
>>> print(list(results.keys())) | |
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] | |
>>> print(round(results["score"], 1)) | |
100.0 | |
Example 2: | |
>>> predictions = ["hello there general kenobi", | |
... "on our way to ankh morpork"] | |
>>> references = [["hello there general kenobi", "hello there !"], | |
... ["goodbye ankh morpork", "ankh morpork"]] | |
>>> sacrebleu = evaluate.load("sacrebleu") | |
>>> results = sacrebleu.compute(predictions=predictions, | |
... references=references) | |
>>> print(list(results.keys())) | |
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] | |
>>> print(round(results["score"], 1)) | |
39.8 | |
""" | |
class Sacrebleu(evaluate.EvaluationModule): | |
def _info(self): | |
if version.parse(scb.__version__) < version.parse("1.4.12"): | |
raise ImportWarning( | |
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" | |
'You can install it with `pip install "sacrebleu>=1.4.12"`.' | |
) | |
return evaluate.EvaluationModuleInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
homepage="https://github.com/mjpost/sacreBLEU", | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=[ | |
datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), | |
} | |
), | |
datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Value("string", id="sequence"), | |
} | |
), | |
], | |
codebase_urls=["https://github.com/mjpost/sacreBLEU"], | |
reference_urls=[ | |
"https://github.com/mjpost/sacreBLEU", | |
"https://en.wikipedia.org/wiki/BLEU", | |
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", | |
], | |
) | |
def _compute( | |
self, | |
predictions, | |
references, | |
smooth_method="exp", | |
smooth_value=None, | |
force=False, | |
lowercase=False, | |
tokenize=None, | |
use_effective_order=False, | |
): | |
# if only one reference is provided make sure we still use list of lists | |
if isinstance(references[0], str): | |
references = [[ref] for ref in references] | |
references_per_prediction = len(references[0]) | |
if any(len(refs) != references_per_prediction for refs in references): | |
raise ValueError("Sacrebleu requires the same number of references for each prediction") | |
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] | |
output = scb.corpus_bleu( | |
predictions, | |
transformed_references, | |
smooth_method=smooth_method, | |
smooth_value=smooth_value, | |
force=force, | |
lowercase=lowercase, | |
use_effective_order=use_effective_order, | |
**(dict(tokenize=tokenize) if tokenize else {}), | |
) | |
output_dict = { | |
"score": output.score, | |
"counts": output.counts, | |
"totals": output.totals, | |
"precisions": output.precisions, | |
"bp": output.bp, | |
"sys_len": output.sys_len, | |
"ref_len": output.ref_len, | |
} | |
return output_dict | |