Spaces:
Runtime error
Runtime error
File size: 5,066 Bytes
d606e52 87bf795 d606e52 87bf795 d606e52 87bf795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
title: SacreBLEU
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
- evaluate
- metric
---
# Metric Card for SacreBLEU
## Metric Description
SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official Workshop on Machine Translation (WMT) scores but works with plain text. It also knows all the standard test sets and handles downloading, processing, and tokenization.
See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information.
## How to Use
This metric takes a set of predictions and a set of references as input, along with various optional parameters.
```python
>>> predictions = ["hello there general kenobi", "foo bar foobar"]
>>> references = [["hello there general kenobi", "hello there !"],
... ["foo bar foobar", "foo bar foobar"]]
>>> sacrebleu = evaluate.load("sacrebleu")
>>> results = sacrebleu.compute(predictions=predictions,
... references=references)
>>> print(list(results.keys()))
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
>>> print(round(results["score"], 1))
100.0
```
### Inputs
- **`predictions`** (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens.
- **`references`** (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length).
- **`smooth_method`** (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are:
- `'none'`: no smoothing
- `'floor'`: increment zero counts
- `'add-k'`: increment num/denom by k for n>1
- `'exp'`: exponential decay
- **`smooth_value`** (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`).
- **`tokenize`** (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are:
- `'none'`: No tokenization.
- `'zh'`: Chinese tokenization.
- `'13a'`: mimics the `mteval-v13a` script from Moses.
- `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses
- `'char'`: Language-agnostic character-level tokenization.
- `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3).
- **`lowercase`** (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`.
- **`force`** (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`.
- **`use_effective_order`** (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`.
### Output Values
- `score`: BLEU score
- `counts`: Counts
- `totals`: Totals
- `precisions`: Precisions
- `bp`: Brevity penalty
- `sys_len`: predictions length
- `ref_len`: reference length
The output is in the following format:
```python
{'score': 39.76353643835252, 'counts': [6, 4, 2, 1], 'totals': [10, 8, 6, 4], 'precisions': [60.0, 50.0, 33.333333333333336, 25.0], 'bp': 1.0, 'sys_len': 10, 'ref_len': 7}
```
The score can take any value between `0.0` and `100.0`, inclusive.
#### Values from Popular Papers
### Examples
```python
>>> predictions = ["hello there general kenobi",
... "on our way to ankh morpork"]
>>> references = [["hello there general kenobi", "hello there !"],
... ["goodbye ankh morpork", "ankh morpork"]]
>>> sacrebleu = evaluate.load("sacrebleu")
>>> results = sacrebleu.compute(predictions=predictions,
... references=references)
>>> print(list(results.keys()))
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
>>> print(round(results["score"], 1))
39.8
```
## Limitations and Bias
Because what this metric calculates is BLEU scores, it has the same limitations as that metric, except that sacreBLEU is more easily reproducible.
## Citation
```bibtex
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
```
## Further References
- See the [sacreBLEU README.md file](https://github.com/mjpost/sacreBLEU) for more information. |