Spaces:
Running
Running
Update Space (evaluate main: 9be38a7c)
Browse files- README.md +6 -6
- perplexity.py +6 -6
README.md
CHANGED
@@ -37,13 +37,13 @@ The metric takes a list of text as input, as well as the name of the model used
|
|
37 |
```python
|
38 |
from evaluate import load
|
39 |
perplexity = load("perplexity", module_type="metric")
|
40 |
-
results = perplexity.compute(
|
41 |
```
|
42 |
|
43 |
### Inputs
|
44 |
- **model_id** (str): model used for calculating Perplexity. NOTE: Perplexity can only be calculated for causal language models.
|
45 |
- This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
46 |
-
- **
|
47 |
- **batch_size** (int): the batch size to run texts through the model. Defaults to 16.
|
48 |
- **add_start_token** (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True.
|
49 |
- **device** (str): device to run on, defaults to 'cuda' when available
|
@@ -62,13 +62,13 @@ This metric's range is 0 and up. A lower score is better.
|
|
62 |
|
63 |
|
64 |
### Examples
|
65 |
-
Calculating perplexity on
|
66 |
```python
|
67 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
68 |
input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
69 |
results = perplexity.compute(model_id='gpt2',
|
70 |
add_start_token=False,
|
71 |
-
|
72 |
print(list(results.keys()))
|
73 |
>>>['perplexities', 'mean_perplexity']
|
74 |
print(round(results["mean_perplexity"], 2))
|
@@ -76,7 +76,7 @@ print(round(results["mean_perplexity"], 2))
|
|
76 |
print(round(results["perplexities"][0], 2))
|
77 |
>>>11.11
|
78 |
```
|
79 |
-
Calculating perplexity on
|
80 |
```python
|
81 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
82 |
input_texts = datasets.load_dataset("wikitext",
|
@@ -84,7 +84,7 @@ input_texts = datasets.load_dataset("wikitext",
|
|
84 |
split="test")["text"][:50]
|
85 |
input_texts = [s for s in input_texts if s!='']
|
86 |
results = perplexity.compute(model_id='gpt2',
|
87 |
-
|
88 |
print(list(results.keys()))
|
89 |
>>>['perplexities', 'mean_perplexity']
|
90 |
print(round(results["mean_perplexity"], 2))
|
|
|
37 |
```python
|
38 |
from evaluate import load
|
39 |
perplexity = load("perplexity", module_type="metric")
|
40 |
+
results = perplexity.compute(predictions=predictions, model_id='gpt2')
|
41 |
```
|
42 |
|
43 |
### Inputs
|
44 |
- **model_id** (str): model used for calculating Perplexity. NOTE: Perplexity can only be calculated for causal language models.
|
45 |
- This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
46 |
+
- **predictions** (list of str): input text, each separate text snippet is one list entry.
|
47 |
- **batch_size** (int): the batch size to run texts through the model. Defaults to 16.
|
48 |
- **add_start_token** (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True.
|
49 |
- **device** (str): device to run on, defaults to 'cuda' when available
|
|
|
62 |
|
63 |
|
64 |
### Examples
|
65 |
+
Calculating perplexity on predictions defined here:
|
66 |
```python
|
67 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
68 |
input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
69 |
results = perplexity.compute(model_id='gpt2',
|
70 |
add_start_token=False,
|
71 |
+
predictions=input_texts)
|
72 |
print(list(results.keys()))
|
73 |
>>>['perplexities', 'mean_perplexity']
|
74 |
print(round(results["mean_perplexity"], 2))
|
|
|
76 |
print(round(results["perplexities"][0], 2))
|
77 |
>>>11.11
|
78 |
```
|
79 |
+
Calculating perplexity on predictions loaded in from a dataset:
|
80 |
```python
|
81 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
82 |
input_texts = datasets.load_dataset("wikitext",
|
|
|
84 |
split="test")["text"][:50]
|
85 |
input_texts = [s for s in input_texts if s!='']
|
86 |
results = perplexity.compute(model_id='gpt2',
|
87 |
+
predictions=input_texts)
|
88 |
print(list(results.keys()))
|
89 |
>>>['perplexities', 'mean_perplexity']
|
90 |
print(round(results["mean_perplexity"], 2))
|
perplexity.py
CHANGED
@@ -43,7 +43,7 @@ Args:
|
|
43 |
in the AutoModelForCausalLM documentation here:
|
44 |
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
45 |
|
46 |
-
|
47 |
is one list entry.
|
48 |
batch_size (int): the batch size to run texts through the model. Defaults to 16.
|
49 |
add_start_token (bool): whether to add the start token to the texts,
|
@@ -60,7 +60,7 @@ Examples:
|
|
60 |
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
61 |
>>> results = perplexity.compute(model_id='gpt2',
|
62 |
... add_start_token=False,
|
63 |
-
...
|
64 |
>>> print(list(results.keys()))
|
65 |
['perplexities', 'mean_perplexity']
|
66 |
>>> print(round(results["mean_perplexity"], 2))
|
@@ -74,7 +74,7 @@ Examples:
|
|
74 |
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
75 |
>>> input_texts = [s for s in input_texts if s!='']
|
76 |
>>> results = perplexity.compute(model_id='gpt2',
|
77 |
-
...
|
78 |
>>> print(list(results.keys()))
|
79 |
['perplexities', 'mean_perplexity']
|
80 |
>>> print(round(results["mean_perplexity"], 2)) # doctest: +SKIP
|
@@ -94,13 +94,13 @@ class Perplexity(evaluate.EvaluationModule):
|
|
94 |
inputs_description=_KWARGS_DESCRIPTION,
|
95 |
features=datasets.Features(
|
96 |
{
|
97 |
-
"
|
98 |
}
|
99 |
),
|
100 |
reference_urls=["https://huggingface.co/docs/transformers/perplexity"],
|
101 |
)
|
102 |
|
103 |
-
def _compute(self,
|
104 |
|
105 |
if device is not None:
|
106 |
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
@@ -136,7 +136,7 @@ class Perplexity(evaluate.EvaluationModule):
|
|
136 |
max_tokenized_len = model.config.max_length
|
137 |
|
138 |
encodings = tokenizer(
|
139 |
-
|
140 |
add_special_tokens=False,
|
141 |
padding=True,
|
142 |
truncation=True,
|
|
|
43 |
in the AutoModelForCausalLM documentation here:
|
44 |
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
45 |
|
46 |
+
predictions (list of str): input text, each separate text snippet
|
47 |
is one list entry.
|
48 |
batch_size (int): the batch size to run texts through the model. Defaults to 16.
|
49 |
add_start_token (bool): whether to add the start token to the texts,
|
|
|
60 |
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
61 |
>>> results = perplexity.compute(model_id='gpt2',
|
62 |
... add_start_token=False,
|
63 |
+
... predictions=input_texts) # doctest:+ELLIPSIS
|
64 |
>>> print(list(results.keys()))
|
65 |
['perplexities', 'mean_perplexity']
|
66 |
>>> print(round(results["mean_perplexity"], 2))
|
|
|
74 |
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
75 |
>>> input_texts = [s for s in input_texts if s!='']
|
76 |
>>> results = perplexity.compute(model_id='gpt2',
|
77 |
+
... predictions=input_texts)
|
78 |
>>> print(list(results.keys()))
|
79 |
['perplexities', 'mean_perplexity']
|
80 |
>>> print(round(results["mean_perplexity"], 2)) # doctest: +SKIP
|
|
|
94 |
inputs_description=_KWARGS_DESCRIPTION,
|
95 |
features=datasets.Features(
|
96 |
{
|
97 |
+
"predictions": datasets.Value("string"),
|
98 |
}
|
99 |
),
|
100 |
reference_urls=["https://huggingface.co/docs/transformers/perplexity"],
|
101 |
)
|
102 |
|
103 |
+
def _compute(self, predictions, model_id, batch_size: int = 16, add_start_token: bool = True, device=None):
|
104 |
|
105 |
if device is not None:
|
106 |
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
|
|
136 |
max_tokenized_len = model.config.max_length
|
137 |
|
138 |
encodings = tokenizer(
|
139 |
+
predictions,
|
140 |
add_special_tokens=False,
|
141 |
padding=True,
|
142 |
truncation=True,
|