File size: 4,546 Bytes
e4482cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6df4e5
dad91c7
b6df4e5
e4482cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dad91c7
e4482cc
 
dad91c7
e4482cc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MSE - Mean Squared Error Metric"""

import datasets
from sklearn.metrics import mean_squared_error

import evaluate


_CITATION = """\
@article{scikit-learn,
 title={Scikit-learn: Machine Learning in {P}ython},
 author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
 journal={Journal of Machine Learning Research},
 volume={12},
 pages={2825--2830},
 year={2011}
}
"""

_DESCRIPTION = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""


_KWARGS_DESCRIPTION = """
Args:
    predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.
    references: array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.
    sample_weight: array-like of shape (n_samples,), default=None
        Sample weights.
    multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
        Defines aggregating of multiple output values. Array-like value defines weights used to average errors.

        "raw_values" : Returns a full set of errors in case of multioutput input.

        "uniform_average" : Errors of all outputs are averaged with uniform weight.

    squared : bool, default=True
        If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.

Returns:
    mse : mean squared error.
Examples:

    >>> mse_metric = evaluate.load("mse")
    >>> predictions = [2.5, 0.0, 2, 8]
    >>> references = [3, -0.5, 2, 7]
    >>> results = mse_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'mse': 0.375}
    >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
    >>> print(rmse_result)
    {'mse': 0.6123724356957945}

    If you're using multi-dimensional lists, then set the config as follows :

    >>> mse_metric = evaluate.load("mse", "multilist")
    >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
    >>> references = [[0, 2], [-1, 2], [8, -5]]
    >>> results = mse_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'mse': 0.7083333333333334}
    >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
    >>> print(results) # doctest: +NORMALIZE_WHITESPACE
    {'mse': array([0.41666667, 1. ])}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Mse(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(self._get_feature_types()),
            reference_urls=[
                "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
            ],
        )

    def _get_feature_types(self):
        if self.config_name == "multilist":
            return {
                "predictions": datasets.Sequence(datasets.Value("float")),
                "references": datasets.Sequence(datasets.Value("float")),
            }
        else:
            return {
                "predictions": datasets.Value("float"),
                "references": datasets.Value("float"),
            }

    def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average", squared=True):

        mse = mean_squared_error(
            references, predictions, sample_weight=sample_weight, multioutput=multioutput, squared=squared
        )

        return {"mse": mse}