File size: 13,097 Bytes
f59058f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Copyright 2022 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mean IoU (Intersection-over-Union) metric."""

from typing import Dict, Optional

import datasets
import numpy as np

import evaluate


_DESCRIPTION = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""

_KWARGS_DESCRIPTION = """
Args:
    predictions (`List[ndarray]`):
        List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
    references (`List[ndarray]`):
        List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
    num_labels (`int`):
        Number of classes (categories).
    ignore_index (`int`):
        Index that will be ignored during evaluation.
    nan_to_num (`int`, *optional*):
        If specified, NaN values will be replaced by the number defined by the user.
    label_map (`dict`, *optional*):
        If specified, dictionary mapping old label indices to new label indices.
    reduce_labels (`bool`, *optional*, defaults to `False`):
        Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
        and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.

Returns:
    `Dict[str, float | ndarray]` comprising various elements:
    - *mean_iou* (`float`):
        Mean Intersection-over-Union (IoU averaged over all categories).
    - *mean_accuracy* (`float`):
        Mean accuracy (averaged over all categories).
    - *overall_accuracy* (`float`):
        Overall accuracy on all images.
    - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
        Per category accuracy.
    - *per_category_iou* (`ndarray` of shape `(num_labels,)`):
        Per category IoU.

Examples:

    >>> import numpy as np

    >>> mean_iou = evaluate.load("mean_iou")

    >>> # suppose one has 3 different segmentation maps predicted
    >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
    >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])

    >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
    >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])

    >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
    >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])

    >>> predicted = [predicted_1, predicted_2, predicted_3]
    >>> ground_truth = [actual_1, actual_2, actual_3]

    >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
    >>> print(results) # doctest: +NORMALIZE_WHITESPACE
    {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0.   , 0.   , 0.375, 0.4  , 0.5  , 0.   , 0.5  , 1.   , 1.   , 1.   ]), 'per_category_accuracy': array([0.        , 0.        , 0.75      , 0.66666667, 1.        , 0.        , 0.5       , 1.        , 1.        , 1.        ])}
"""

_CITATION = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""


def intersect_and_union(
    pred_label,
    label,
    num_labels,
    ignore_index: bool,
    label_map: Optional[Dict[int, int]] = None,
    reduce_labels: bool = False,
):
    """Calculate intersection and Union.

    Args:
        pred_label (`ndarray`):
            Prediction segmentation map of shape (height, width).
        label (`ndarray`):
            Ground truth segmentation map of shape (height, width).
        num_labels (`int`):
            Number of categories.
        ignore_index (`int`):
            Index that will be ignored during evaluation.
        label_map (`dict`, *optional*):
            Mapping old labels to new labels. The parameter will work only when label is str.
        reduce_labels (`bool`, *optional*, defaults to `False`):
            Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
            and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.

     Returns:
         area_intersect (`ndarray`):
            The intersection of prediction and ground truth histogram on all classes.
         area_union (`ndarray`):
            The union of prediction and ground truth histogram on all classes.
         area_pred_label (`ndarray`):
            The prediction histogram on all classes.
         area_label (`ndarray`):
            The ground truth histogram on all classes.
    """
    if label_map is not None:
        for old_id, new_id in label_map.items():
            label[label == old_id] = new_id

    # turn into Numpy arrays
    pred_label = np.array(pred_label)
    label = np.array(label)

    if reduce_labels:
        label[label == 0] = 255
        label = label - 1
        label[label == 254] = 255

    mask = label != ignore_index
    mask = np.not_equal(label, ignore_index)
    pred_label = pred_label[mask]
    label = np.array(label)[mask]

    intersect = pred_label[pred_label == label]

    area_intersect = np.histogram(intersect, bins=num_labels, range=(0, num_labels - 1))[0]
    area_pred_label = np.histogram(pred_label, bins=num_labels, range=(0, num_labels - 1))[0]
    area_label = np.histogram(label, bins=num_labels, range=(0, num_labels - 1))[0]

    area_union = area_pred_label + area_label - area_intersect

    return area_intersect, area_union, area_pred_label, area_label


def total_intersect_and_union(
    results,
    gt_seg_maps,
    num_labels,
    ignore_index: bool,
    label_map: Optional[Dict[int, int]] = None,
    reduce_labels: bool = False,
):
    """Calculate Total Intersection and Union, by calculating `intersect_and_union` for each (predicted, ground truth) pair.

    Args:
        results (`ndarray`):
            List of prediction segmentation maps, each of shape (height, width).
        gt_seg_maps (`ndarray`):
            List of ground truth segmentation maps, each of shape (height, width).
        num_labels (`int`):
            Number of categories.
        ignore_index (`int`):
            Index that will be ignored during evaluation.
        label_map (`dict`, *optional*):
            Mapping old labels to new labels. The parameter will work only when label is str.
        reduce_labels (`bool`, *optional*, defaults to `False`):
            Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
            and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.

     Returns:
         total_area_intersect (`ndarray`):
            The intersection of prediction and ground truth histogram on all classes.
         total_area_union (`ndarray`):
            The union of prediction and ground truth histogram on all classes.
         total_area_pred_label (`ndarray`):
            The prediction histogram on all classes.
         total_area_label (`ndarray`):
            The ground truth histogram on all classes.
    """
    total_area_intersect = np.zeros((num_labels,), dtype=np.float64)
    total_area_union = np.zeros((num_labels,), dtype=np.float64)
    total_area_pred_label = np.zeros((num_labels,), dtype=np.float64)
    total_area_label = np.zeros((num_labels,), dtype=np.float64)
    for result, gt_seg_map in zip(results, gt_seg_maps):
        area_intersect, area_union, area_pred_label, area_label = intersect_and_union(
            result, gt_seg_map, num_labels, ignore_index, label_map, reduce_labels
        )
        total_area_intersect += area_intersect
        total_area_union += area_union
        total_area_pred_label += area_pred_label
        total_area_label += area_label
    return total_area_intersect, total_area_union, total_area_pred_label, total_area_label


def mean_iou(
    results,
    gt_seg_maps,
    num_labels,
    ignore_index: bool,
    nan_to_num: Optional[int] = None,
    label_map: Optional[Dict[int, int]] = None,
    reduce_labels: bool = False,
):
    """Calculate Mean Intersection and Union (mIoU).

    Args:
        results (`ndarray`):
            List of prediction segmentation maps, each of shape (height, width).
        gt_seg_maps (`ndarray`):
            List of ground truth segmentation maps, each of shape (height, width).
        num_labels (`int`):
            Number of categories.
        ignore_index (`int`):
            Index that will be ignored during evaluation.
        nan_to_num (`int`, *optional*):
            If specified, NaN values will be replaced by the number defined by the user.
        label_map (`dict`, *optional*):
            Mapping old labels to new labels. The parameter will work only when label is str.
        reduce_labels (`bool`, *optional*, defaults to `False`):
            Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
            and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.

    Returns:
        `Dict[str, float | ndarray]` comprising various elements:
        - *mean_iou* (`float`):
            Mean Intersection-over-Union (IoU averaged over all categories).
        - *mean_accuracy* (`float`):
            Mean accuracy (averaged over all categories).
        - *overall_accuracy* (`float`):
            Overall accuracy on all images.
        - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
            Per category accuracy.
        - *per_category_iou* (`ndarray` of shape `(num_labels,)`):
            Per category IoU.
    """
    total_area_intersect, total_area_union, total_area_pred_label, total_area_label = total_intersect_and_union(
        results, gt_seg_maps, num_labels, ignore_index, label_map, reduce_labels
    )

    # compute metrics
    metrics = dict()

    all_acc = total_area_intersect.sum() / total_area_label.sum()
    iou = total_area_intersect / total_area_union
    acc = total_area_intersect / total_area_label

    metrics["mean_iou"] = np.nanmean(iou)
    metrics["mean_accuracy"] = np.nanmean(acc)
    metrics["overall_accuracy"] = all_acc
    metrics["per_category_iou"] = iou
    metrics["per_category_accuracy"] = acc

    if nan_to_num is not None:
        metrics = dict(
            {metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in metrics.items()}
        )

    return metrics


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MeanIoU(evaluate.EvaluationModule):
    def _info(self):
        return evaluate.EvaluationModuleInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                # 1st Seq - height dim, 2nd - width dim
                {
                    "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
                    "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
                }
            ),
            reference_urls=[
                "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
            ],
        )

    def _compute(
        self,
        predictions,
        references,
        num_labels: int,
        ignore_index: bool,
        nan_to_num: Optional[int] = None,
        label_map: Optional[Dict[int, int]] = None,
        reduce_labels: bool = False,
    ):
        iou_result = mean_iou(
            results=predictions,
            gt_seg_maps=references,
            num_labels=num_labels,
            ignore_index=ignore_index,
            nan_to_num=nan_to_num,
            label_map=label_map,
            reduce_labels=reduce_labels,
        )
        return iou_result