File size: 5,749 Bytes
a49ed8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def22d5
6e35b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def22d5
a49ed8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GLUE benchmark metric. """

import datasets
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef

import evaluate


_CITATION = """\
@inproceedings{wang2019glue,
  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
  note={In the Proceedings of ICLR.},
  year={2019}
}
"""

_DESCRIPTION = """\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
"""

_KWARGS_DESCRIPTION = """
Compute GLUE evaluation metric associated to each GLUE dataset.
Args:
    predictions: list of predictions to score.
        Each translation should be tokenized into a list of tokens.
    references: list of lists of references for each translation.
        Each reference should be tokenized into a list of tokens.
Returns: depending on the GLUE subset, one or several of:
    "accuracy": Accuracy
    "f1": F1 score
    "pearson": Pearson Correlation
    "spearmanr": Spearman Correlation
    "matthews_correlation": Matthew Correlation
Examples:

    >>> glue_metric = evaluate.load('glue', 'sst2')  # 'sst2' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]
    >>> references = [0, 1]
    >>> predictions = [0, 1]
    >>> results = glue_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'accuracy': 1.0}

    >>> glue_metric = evaluate.load('glue', 'mrpc')  # 'mrpc' or 'qqp'
    >>> references = [0, 1]
    >>> predictions = [0, 1]
    >>> results = glue_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'accuracy': 1.0, 'f1': 1.0}

    >>> glue_metric = evaluate.load('glue', 'stsb')
    >>> references = [0., 1., 2., 3., 4., 5.]
    >>> predictions = [0., 1., 2., 3., 4., 5.]
    >>> results = glue_metric.compute(predictions=predictions, references=references)
    >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})
    {'pearson': 1.0, 'spearmanr': 1.0}

    >>> glue_metric = evaluate.load('glue', 'cola')
    >>> references = [0, 1]
    >>> predictions = [0, 1]
    >>> results = glue_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'matthews_correlation': 1.0}
"""


def simple_accuracy(preds, labels):
    return float((preds == labels).mean())


def acc_and_f1(preds, labels):
    acc = simple_accuracy(preds, labels)
    f1 = float(f1_score(y_true=labels, y_pred=preds))
    return {
        "accuracy": acc,
        "f1": f1,
    }


def pearson_and_spearman(preds, labels):
    pearson_corr = float(pearsonr(preds, labels)[0])
    spearman_corr = float(spearmanr(preds, labels)[0])
    return {
        "pearson": pearson_corr,
        "spearmanr": spearman_corr,
    }


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Glue(evaluate.Metric):
    def _info(self):
        if self.config_name not in [
            "sst2",
            "mnli",
            "mnli_mismatched",
            "mnli_matched",
            "cola",
            "stsb",
            "mrpc",
            "qqp",
            "qnli",
            "rte",
            "wnli",
            "hans",
        ]:
            raise KeyError(
                "You should supply a configuration name selected in "
                '["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
                '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]'
            )
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32"),
                    "references": datasets.Value("int64" if self.config_name != "stsb" else "float32"),
                }
            ),
            codebase_urls=[],
            reference_urls=[],
            format="numpy",
        )

    def _compute(self, predictions, references):
        if self.config_name == "cola":
            return {"matthews_correlation": matthews_corrcoef(references, predictions)}
        elif self.config_name == "stsb":
            return pearson_and_spearman(predictions, references)
        elif self.config_name in ["mrpc", "qqp"]:
            return acc_and_f1(predictions, references)
        elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
            return {"accuracy": simple_accuracy(predictions, references)}
        else:
            raise KeyError(
                "You should supply a configuration name selected in "
                '["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
                '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]'
            )