Spaces:
Runtime error
Runtime error
File size: 6,315 Bytes
c44d64a 3686e61 c44d64a f1d7582 c44d64a f1d7582 3686e61 c44d64a f1d7582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
title: null
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
FrugalScore is a reference-based metric for NLG models evaluation. It is based
on a distillation approach that allows to learn a fixed, low cost version of
any expensive NLG metric, while retaining most of its original performance.
---
## Metric Description
FrugalScore is a reference-based metric for Natural Language Generation (NLG) model evaluation. It is based on a distillation approach that allows to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance.
The FrugalScore models are obtained by continuing the pretraining of small models on a synthetic dataset constructed using summarization, backtranslation and denoising models. During the training, the small models learn the internal mapping of the expensive metric, including any similarity function.
## How to use
When loading FrugalScore, you can indicate the model you wish to use to compute the score. The default model is `moussaKam/frugalscore_tiny_bert-base_bert-score`, and a full list of models can be found in the [Limitations and bias](#Limitations-and-bias) section.
```python
>>> frugalscore = evaluate.load("frugalscore", "moussaKam/frugalscore_medium_bert-base_mover-score")
```
FrugalScore calculates how good are the predictions given some references, based on a set of scores.
The inputs it takes are:
`predictions`: a list of strings representing the predictions to score.
`references`: a list of string representing the references for each prediction.
Its optional arguments are:
`batch_size`: the batch size for predictions (default value is `32`).
`max_length`: the maximum sequence length (default value is `128`).
`device`: either "gpu" or "cpu" (default value is `None`).
```python
>>> results = frugalscore.compute(predictions=['hello there', 'huggingface'], references=['hello world', 'hugging face'], batch_size=16, max_length=64, device="gpu")
```
## Output values
The output of FrugalScore is a dictionary with the list of scores for each prediction-reference pair:
```python
{'scores': [0.6307541, 0.6449357]}
```
### Values from popular papers
The [original FrugalScore paper](https://arxiv.org/abs/2110.08559) reported that FrugalScore-Tiny retains 97.7/94.7% of the original performance compared to [BertScore](https://huggingface.co/metrics/bertscore) while running 54 times faster and having 84 times less parameters.
## Examples
Maximal values (exact match between `references` and `predictions`):
```python
>>> frugalscore = evaluate.load("frugalscore")
>>> results = frugalscore.compute(predictions=['hello world'], references=['hello world'])
>>> print(results)
{'scores': [0.9891098]}
```
Partial values:
```python
>>> frugalscore = evaluate.load("frugalscore")
>>> results = frugalscore.compute(predictions=['hello world'], references=['hugging face'])
>>> print(results)
{'scores': [0.42482382]}
```
## Limitations and bias
FrugalScore is based on [BertScore](https://huggingface.co/metrics/bertscore) and [MoverScore](https://arxiv.org/abs/1909.02622), and the models used are based on the original models used for these scores.
The full list of available models for FrugalScore is:
| FrugalScore | Student | Teacher | Method |
|----------------------------------------------------|-------------|----------------|------------|
| [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore |
| [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore |
| [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore |
| [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore |
| [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore |
| [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
Depending on the size of the model picked, the loading time will vary: the `tiny` models will load very quickly, whereas the `medium` ones can take several minutes, depending on your Internet connection.
## Citation
```bibtex
@article{eddine2021frugalscore,
title={FrugalScore: Learning Cheaper, Lighter and Faster Evaluation Metrics for Automatic Text Generation},
author={Eddine, Moussa Kamal and Shang, Guokan and Tixier, Antoine J-P and Vazirgiannis, Michalis},
journal={arXiv preprint arXiv:2110.08559},
year={2021}
}
```
## Further References
- [Original FrugalScore code](https://github.com/moussaKam/FrugalScore)
- [FrugalScore paper](https://arxiv.org/abs/2110.08559)
|