Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Brier Score Metric""" | |
import datasets | |
from sklearn.metrics import brier_score_loss | |
import evaluate | |
_CITATION = """\ | |
@article{scikit-learn, | |
title={Scikit-learn: Machine Learning in {P}ython}, | |
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. | |
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. | |
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and | |
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, | |
journal={Journal of Machine Learning Research}, | |
volume={12}, | |
pages={2825--2830}, | |
year={2011} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Brier score is a type of evaluation metric for classification tasks, where you predict outcomes such as win/lose, spam/ham, click/no-click etc. | |
`BrierScore = 1/N * sum( (p_i - o_i)^2 )` | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Args: | |
y_true : array of shape (n_samples,) | |
True targets. | |
y_prob : array of shape (n_samples,) | |
Probabilities of the positive class. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
pos_label : int or str, default=None | |
Label of the positive class. `pos_label` will be inferred in the | |
following manner: | |
* if `y_true` in {-1, 1} or {0, 1}, `pos_label` defaults to 1; | |
* else if `y_true` contains string, an error will be raised and | |
`pos_label` should be explicitly specified; | |
* otherwise, `pos_label` defaults to the greater label, | |
i.e. `np.unique(y_true)[-1]`. | |
Returns | |
score : float | |
Brier score loss. | |
Examples: | |
Example-1: if y_true in {-1, 1} or {0, 1}, pos_label defaults to 1. | |
>>> import numpy as np | |
>>> brier_score = evaluate.load("brier_score") | |
>>> references = np.array([0, 0, 1, 1]) | |
>>> predictions = np.array([0.1, 0.9, 0.8, 0.3]) | |
>>> results = brier_score.compute(references=references, predictions=predictions) | |
>>> print(round(results["brier_score"], 4)) | |
0.3375 | |
Example-2: if y_true contains string, an error will be raised and pos_label should be explicitly specified. | |
>>> import numpy as np | |
>>> brier_score = evaluate.load("brier_score") | |
>>> references = np.array(["spam", "ham", "ham", "spam"]) | |
>>> predictions = np.array([0.1, 0.9, 0.8, 0.3]) | |
>>> results = brier_score.compute(references=references, predictions=predictions, pos_label="ham") | |
>>> print(round(results["brier_score"], 4)) | |
0.0375 | |
""" | |
class BrierScore(evaluate.Metric): | |
def _info(self): | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=self._get_feature_types(), | |
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html"], | |
) | |
def _get_feature_types(self): | |
if self.config_name == "multilist": | |
return [ | |
datasets.Features( | |
{ | |
"references": datasets.Sequence(datasets.Value("float")), | |
"predictions": datasets.Sequence(datasets.Value("float")), | |
} | |
), | |
datasets.Features( | |
{ | |
"references": datasets.Sequence(datasets.Value("string")), | |
"predictions": datasets.Sequence(datasets.Value("float")), | |
} | |
), | |
] | |
else: | |
return [ | |
datasets.Features( | |
{ | |
"references": datasets.Value("float"), | |
"predictions": datasets.Value("float"), | |
} | |
), | |
datasets.Features( | |
{ | |
"references": datasets.Value("string"), | |
"predictions": datasets.Value("float"), | |
} | |
), | |
] | |
def _compute(self, references, predictions, sample_weight=None, pos_label=1): | |
brier_score = brier_score_loss(references, predictions, sample_weight=sample_weight, pos_label=pos_label) | |
return {"brier_score": brier_score} | |