eusholli's picture
added footer
6234614
raw
history blame
13.1 kB
import torch
import tensorflow as tf
import time
import os
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from utils.download import download_file
from utils.turn import get_ice_servers
from mtcnn import MTCNN # Import MTCNN for face detection
from PIL import Image, ImageDraw # Import PIL for image processing
from transformers import pipeline # Import Hugging Face transformers pipeline
import requests
from io import BytesIO # Import for handling byte streams
# Named tuple to store detection results
class Detection(NamedTuple):
class_id: int
label: str
score: float
box: np.ndarray
# Queue to store detection results
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# CHANGE CODE BELOW HERE, USE TO REPLACE WITH YOUR WANTED ANALYSIS.
# Update below string to set display title of analysis
# Appropriate imports needed for analysis
# Initialize the Hugging Face pipeline for facial emotion detection
emotion_pipeline = pipeline("image-classification",
model="trpakov/vit-face-expression")
# Default title - "Facial Sentiment Analysis"
ANALYSIS_TITLE = "Facial Sentiment Analysis"
# CHANGE THE CONTENTS OF THIS FUNCTION, USE TO REPLACE WITH YOUR WANTED ANALYSIS.
#
#
# Function to analyze an input frame and generate an analyzed frame
# This function takes an input video frame, detects faces in it using MTCNN,
# then for each detected face, it analyzes the sentiment (emotion) using the analyze_sentiment function,
# draws a rectangle around the face, and overlays the detected emotion on the frame.
# It also records the time taken to process the frame and stores it in a global container.
# Constants for text and line size in the output image
TEXT_SIZE = 1
LINE_SIZE = 2
# Set analysis results in img_container and result queue for display
# img_container["input"] - holds the input frame contents - of type np.ndarray
# img_container["analyzed"] - holds the analyzed frame with any added annotations - of type np.ndarray
# img_container["analysis_time"] - holds how long the analysis has taken in miliseconds
# result_queue - holds the analysis metadata results - of type queue.Queue[List[Detection]]
def analyze_frame(frame: np.ndarray):
start_time = time.time() # Start timing the analysis
img_container["input"] = frame # Store the input frame
frame = frame.copy() # Create a copy of the frame to modify
results = mtcnn.detect_faces(frame) # Detect faces in the frame
for result in results:
x, y, w, h = result["box"] # Get the bounding box of the detected face
face = frame[y: y + h, x: x + w] # Extract the face from the frame
# Analyze the sentiment of the face
sentiment = analyze_sentiment(face)
result["label"] = sentiment
# Draw a rectangle around the face
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), LINE_SIZE)
text_size = cv2.getTextSize(sentiment, cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, 2)[
0
]
text_x = x
text_y = y - 10
background_tl = (text_x, text_y - text_size[1])
background_br = (text_x + text_size[0], text_y + 5)
# Draw a black background for the text
cv2.rectangle(frame, background_tl, background_br,
(0, 0, 0), cv2.FILLED)
# Put the sentiment text on the image
cv2.putText(
frame,
sentiment,
(text_x, text_y),
cv2.FONT_HERSHEY_SIMPLEX,
TEXT_SIZE,
(255, 255, 255),
2,
)
end_time = time.time() # End timing the analysis
execution_time_ms = round(
(end_time - start_time) * 1000, 2
) # Calculate execution time in milliseconds
# Store the execution time
img_container["analysis_time"] = execution_time_ms
result_queue.put(results) # Put the results in the result queue
img_container["analyzed"] = frame # Store the analyzed frame
return # End of the function
# Function to analyze the sentiment (emotion) of a detected face
# This function converts the face from BGR to RGB format, then converts it to a PIL image,
# uses a pre-trained emotion detection model to get emotion predictions,
# and finally returns the most dominant emotion detected.
def analyze_sentiment(face):
# Convert face to RGB format
rgb_face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(rgb_face) # Convert to PIL image
results = emotion_pipeline(pil_image) # Run emotion detection on the image
dominant_emotion = max(results, key=lambda x: x["score"])[
"label"
] # Get the dominant emotion
return dominant_emotion # Return the detected emotion
#
#
# DO NOT TOUCH THE BELOW CODE (NOT NEEDED)
#
#
# Suppress FFmpeg logs
os.environ["FFMPEG_LOG_LEVEL"] = "quiet"
# Suppress TensorFlow or PyTorch progress bars
tf.get_logger().setLevel("ERROR")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Suppress PyTorch logs
logging.getLogger().setLevel(logging.WARNING)
torch.set_num_threads(1)
logging.getLogger("torch").setLevel(logging.ERROR)
# Suppress Streamlit logs using the logging module
logging.getLogger("streamlit").setLevel(logging.ERROR)
# Container to hold image data and analysis results
img_container = {"input": None, "analyzed": None, "analysis_time": None}
# Initialize MTCNN for face detection
mtcnn = MTCNN()
# Logger for debugging and information
logger = logging.getLogger(__name__)
# Callback function to process video frames
# This function is called for each video frame in the WebRTC stream.
# It converts the frame to a numpy array in RGB format, analyzes the frame,
# and returns the original frame.
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# Convert frame to numpy array in RGB format
img = frame.to_ndarray(format="rgb24")
analyze_frame(img) # Analyze the frame
return frame # Return the original frame
# Get ICE servers for WebRTC
ice_servers = get_ice_servers()
# Streamlit UI configuration
st.set_page_config(layout="wide")
# Custom CSS for the Streamlit page
st.markdown(
"""
<style>
.main {
padding: 2rem;
}
h1, h2, h3 {
font-family: 'Arial', sans-serif;
}
h1 {
font-weight: 700;
font-size: 2.5rem;
}
h2 {
font-weight: 600;
font-size: 2rem;
}
h3 {
font-weight: 500;
font-size: 1.5rem;
}
</style>
""",
unsafe_allow_html=True,
)
# Streamlit page title and subtitle
st.title("Computer Vision Playground")
# Add a link to the README file
st.markdown(
"""
<div style="text-align: left;">
<p>See the <a href="https://huggingface.co/spaces/eusholli/sentiment-analyzer/blob/main/README.md"
target="_blank">README</a> to learn how to use this code to help you start your computer vision exploration.</p>
</div>
""",
unsafe_allow_html=True,
)
st.subheader(ANALYSIS_TITLE)
# Columns for input and output streams
col1, col2 = st.columns(2)
with col1:
st.header("Input Stream")
st.subheader("input")
# WebRTC streamer to get video input from the webcam
webrtc_ctx = webrtc_streamer(
key="input-webcam",
mode=WebRtcMode.SENDRECV,
rtc_configuration=ice_servers,
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
# File uploader for images
st.subheader("Upload an Image")
uploaded_file = st.file_uploader(
"Choose an image...", type=["jpg", "jpeg", "png"])
# Text input for image URL
st.subheader("Or Enter Image URL")
image_url = st.text_input("Image URL")
# File uploader for videos
st.subheader("Upload a Video")
uploaded_video = st.file_uploader(
"Choose a video...", type=["mp4", "avi", "mov", "mkv"]
)
# Text input for video URL
st.subheader("Or Enter Video Download URL")
video_url = st.text_input("Video URL")
# Streamlit footer
st.markdown(
"""
<div style="text-align: center; margin-top: 2rem;">
<p>If you want to set up your own computer vision playground see <a href="https://huggingface.co/spaces/eusholli/computer-vision-playground/blob/main/README.md" target="_blank">here</a>.</p>
</div>
""",
unsafe_allow_html=True
)
# Function to initialize the analysis UI
# This function sets up the placeholders and UI elements in the analysis section.
# It creates placeholders for input and output frames, analysis time, and detected labels.
def analysis_init():
global analysis_time, show_labels, labels_placeholder, input_placeholder, output_placeholder
with col2:
st.header("Analysis")
st.subheader("Input Frame")
input_placeholder = st.empty() # Placeholder for input frame
st.subheader("Output Frame")
output_placeholder = st.empty() # Placeholder for output frame
analysis_time = st.empty() # Placeholder for analysis time
show_labels = st.checkbox(
"Show the detected labels", value=True
) # Checkbox to show/hide labels
labels_placeholder = st.empty() # Placeholder for labels
# Function to publish frames and results to the Streamlit UI
# This function retrieves the latest frames and results from the global container and result queue,
# and updates the placeholders in the Streamlit UI with the current input frame, analyzed frame, analysis time, and detected labels.
def publish_frame():
if not result_queue.empty():
result = result_queue.get()
if show_labels:
labels_placeholder.table(
result
) # Display labels if the checkbox is checked
img = img_container["input"]
if img is None:
return
input_placeholder.image(img, channels="RGB") # Display the input frame
analyzed = img_container["analyzed"]
if analyzed is None:
return
# Display the analyzed frame
output_placeholder.image(analyzed, channels="RGB")
time = img_container["analysis_time"]
if time is None:
return
# Display the analysis time
analysis_time.text(f"Analysis Time: {time} ms")
# If the WebRTC streamer is playing, initialize and publish frames
if webrtc_ctx.state.playing:
analysis_init() # Initialize the analysis UI
while True:
publish_frame() # Publish the frames and results
time.sleep(0.1) # Delay to control frame rate
# If an image is uploaded or a URL is provided, process the image
if uploaded_file is not None or image_url:
analysis_init() # Initialize the analysis UI
if uploaded_file is not None:
image = Image.open(uploaded_file) # Open the uploaded image
img = np.array(image.convert("RGB")) # Convert the image to RGB format
else:
response = requests.get(image_url) # Download the image from the URL
# Open the downloaded image
image = Image.open(BytesIO(response.content))
img = np.array(image.convert("RGB")) # Convert the image to RGB format
analyze_frame(img) # Analyze the image
publish_frame() # Publish the results
# Function to process video files
# This function reads frames from a video file, analyzes each frame for face detection and sentiment analysis,
# and updates the Streamlit UI with the current input frame, analyzed frame, and detected labels.
def process_video(video_path):
cap = cv2.VideoCapture(video_path) # Open the video file
while cap.isOpened():
ret, frame = cap.read() # Read a frame from the video
if not ret:
break # Exit the loop if no more frames are available
# Display the current frame as the input frame
input_placeholder.image(frame)
analyze_frame(
frame
) # Analyze the frame for face detection and sentiment analysis
publish_frame() # Publish the results
if not result_queue.empty():
result = result_queue.get()
if show_labels:
labels_placeholder.table(
result
) # Display labels if the checkbox is checked
cap.release() # Release the video capture object
# If a video is uploaded or a URL is provided, process the video
if uploaded_video is not None or video_url:
analysis_init() # Initialize the analysis UI
if uploaded_video is not None:
video_path = uploaded_video.name # Get the name of the uploaded video
with open(video_path, "wb") as f:
# Save the uploaded video to a file
f.write(uploaded_video.getbuffer())
else:
# Download the video from the URL
video_path = download_file(video_url)
process_video(video_path) # Process the video