eubinecto commited on
Commit
e3c7b5a
·
1 Parent(s): 143c53f

[#2] Support for d-1-2 done. Support for m-1-2 partially done (need to implement the testing logic with some valid metrics)

Browse files
README.md CHANGED
@@ -10,4 +10,15 @@ A human-inspired Idiomifier based on BERT
10
  - wandb
11
  - pytorch-lightning
12
  - transformers
13
- - pandas
 
 
 
 
 
 
 
 
 
 
 
 
10
  - wandb
11
  - pytorch-lightning
12
  - transformers
13
+
14
+ ## Versions
15
+ ### models
16
+ format: `m-a-b`
17
+ - a: used to indicate a change in the architecture, or a revision of the final product
18
+ - b: used to indicate a different version of the same architecture (with a different set of hyperparameters)
19
+
20
+
21
+ ### datasets
22
+ format: `d-a-b`
23
+ - a: used to indicate a change in the dataset we are using
24
+ - b: used to indicate a different version of the dataset
config.yaml CHANGED
@@ -1,8 +1,20 @@
1
- tag011:
2
- desc: just overfitting
 
3
  bart: facebook/bart-base
4
  lr: 0.0001
5
- literal2idiomatic_ver: tag01
6
  max_epochs: 100
7
  batch_size: 100
8
- shuffle: true
 
 
 
 
 
 
 
 
 
 
 
 
1
+ train:
2
+ ver: m-1-2
3
+ desc: just overfitting the model, but on the entire PIE dataset.
4
  bart: facebook/bart-base
5
  lr: 0.0001
6
+ literal2idiomatic_ver: d-1-2
7
  max_epochs: 100
8
  batch_size: 100
9
+ shuffle: true
10
+
11
+ # for building & uploading datasets or others
12
+ upload:
13
+ idioms:
14
+ ver: d-1-2
15
+ description: the set of idioms in the traning set of literal2idiomatic:d-1-2
16
+ literal2idiomatic:
17
+ ver: d-1-2
18
+ description: PIE data split into train & test set (80 / 20 split)
19
+ train_ratio: 0.8
20
+ seed: 104
explore/{explore_fetch_seq2seq.py → explore_fetch_idiomifier.py} RENAMED
@@ -1,8 +1,8 @@
1
- from idiomify.fetchers import fetch_seq2seq
2
 
3
 
4
  def main():
5
- model = fetch_seq2seq("overfit")
6
  print(model.bart.config)
7
 
8
 
 
1
+ from idiomify.fetchers import fetch_idiomifier
2
 
3
 
4
  def main():
5
+ model = fetch_idiomifier("m-1-2")
6
  print(model.bart.config)
7
 
8
 
explore/{explore_fetch_seq2seq_predict.py → explore_fetch_idiomifier_predict.py} RENAMED
@@ -1,10 +1,10 @@
1
  from transformers import BartTokenizer
2
  from builders import SourcesBuilder
3
- from fetchers import fetch_seq2seq
4
 
5
 
6
  def main():
7
- model = fetch_seq2seq("overfit")
8
  tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
9
  lit2idi = [
10
  ("my man", ""),
 
1
  from transformers import BartTokenizer
2
  from builders import SourcesBuilder
3
+ from fetchers import fetch_idiomifier
4
 
5
 
6
  def main():
7
+ model = fetch_idiomifier("m-1-2")
8
  tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
9
  lit2idi = [
10
  ("my man", ""),
explore/explore_fetch_idioms.py CHANGED
@@ -2,7 +2,7 @@ from idiomify.fetchers import fetch_idioms
2
 
3
 
4
  def main():
5
- print(fetch_idioms("pie_v0"))
6
 
7
 
8
  if __name__ == '__main__':
 
2
 
3
 
4
  def main():
5
+ print(fetch_idioms("d-1-2"))
6
 
7
 
8
  if __name__ == '__main__':
explore/explore_fetch_literal2idiomatic.py CHANGED
@@ -2,8 +2,9 @@ from idiomify.fetchers import fetch_literal2idiomatic
2
 
3
 
4
  def main():
5
- for src, tgt in fetch_literal2idiomatic("pie_v0"):
6
- print(src, "->", tgt)
 
7
 
8
 
9
  if __name__ == '__main__':
 
2
 
3
 
4
  def main():
5
+ train_df, test_df = fetch_literal2idiomatic("d-1-2")
6
+ print(train_df.size) # 12408 rows
7
+ print(test_df.size) # 3102 rows
8
 
9
 
10
  if __name__ == '__main__':
explore/explore_fetch_pie.py CHANGED
@@ -3,11 +3,9 @@ from idiomify.fetchers import fetch_pie
3
 
4
 
5
  def main():
6
- for idx, row in enumerate(fetch_pie()):
7
- print(idx, row)
8
- # the first 105 = V0.
9
- if idx == 105:
10
- break
11
 
12
 
13
  if __name__ == '__main__':
 
3
 
4
 
5
  def main():
6
+ pie_df = fetch_pie()
7
+ for idx, row in pie_df.iterrows():
8
+ print(row)
 
 
9
 
10
 
11
  if __name__ == '__main__':
explore/explore_fetch_pie_df_select.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fetchers import fetch_pie
2
+
3
+
4
+ def main():
5
+ pie_df = fetch_pie()
6
+ print(pie_df.columns)
7
+ pie_df = pie_df[["Literal_Sent", "Idiomatic_Sent"]]
8
+ print(pie_df.head(5))
9
+
10
+
11
+ if __name__ == '__main__':
12
+ main()
explore/explore_idiomifydatamodule.py CHANGED
@@ -3,7 +3,7 @@ from idiomify.data import IdiomifyDataModule
3
 
4
 
5
  CONFIG = {
6
- "literal2idiomatic_ver": "pie_v0",
7
  "batch_size": 20,
8
  "num_workers": 4,
9
  "shuffle": True
@@ -11,7 +11,7 @@ CONFIG = {
11
 
12
 
13
  def main():
14
- tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
15
  datamodule = IdiomifyDataModule(CONFIG, tokenizer)
16
  datamodule.prepare_data()
17
  datamodule.setup()
@@ -20,6 +20,14 @@ def main():
20
  print(srcs.shape)
21
  print(tgts_r.shape)
22
  print(tgts.shape)
 
 
 
 
 
 
 
 
23
 
24
 
25
  if __name__ == '__main__':
 
3
 
4
 
5
  CONFIG = {
6
+ "literal2idiomatic_ver": "d-1-2",
7
  "batch_size": 20,
8
  "num_workers": 4,
9
  "shuffle": True
 
11
 
12
 
13
  def main():
14
+ tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
15
  datamodule = IdiomifyDataModule(CONFIG, tokenizer)
16
  datamodule.prepare_data()
17
  datamodule.setup()
 
20
  print(srcs.shape)
21
  print(tgts_r.shape)
22
  print(tgts.shape)
23
+ break
24
+
25
+ for batch in datamodule.test_dataloader():
26
+ srcs, tgts_r, tgts = batch
27
+ print(srcs.shape)
28
+ print(tgts_r.shape)
29
+ print(tgts.shape)
30
+ break
31
 
32
 
33
  if __name__ == '__main__':
idiomify/builders.py CHANGED
@@ -55,9 +55,9 @@ class SourcesBuilder(TensorBuilder):
55
  padding=True,
56
  truncation=True,
57
  add_special_tokens=True)
58
- src = torch.stack([encodings['input_ids'],
59
- encodings['attention_mask']], dim=1) # (N, 2, L)
60
- return src # (N, 2, L)
61
 
62
 
63
  class TargetsRightShiftedBuilder(TensorBuilder):
 
55
  padding=True,
56
  truncation=True,
57
  add_special_tokens=True)
58
+ srcs = torch.stack([encodings['input_ids'],
59
+ encodings['attention_mask']], dim=1) # (N, 2, L)
60
+ return srcs # (N, 2, L)
61
 
62
 
63
  class TargetsRightShiftedBuilder(TensorBuilder):
idiomify/data.py CHANGED
@@ -1,9 +1,9 @@
 
1
  import torch
2
- from typing import Tuple, Optional, List
3
  from torch.utils.data import Dataset, DataLoader
4
  from pytorch_lightning import LightningDataModule
5
  from wandb.sdk.wandb_run import Run
6
-
7
  from idiomify.fetchers import fetch_literal2idiomatic
8
  from idiomify.builders import SourcesBuilder, TargetsBuilder, TargetsRightShiftedBuilder
9
  from transformers import BartTokenizer
@@ -38,9 +38,6 @@ class IdiomifyDataset(Dataset):
38
  class IdiomifyDataModule(LightningDataModule):
39
 
40
  # boilerplate - just ignore these
41
- def test_dataloader(self):
42
- pass
43
-
44
  def val_dataloader(self):
45
  pass
46
 
@@ -56,23 +53,37 @@ class IdiomifyDataModule(LightningDataModule):
56
  self.tokenizer = tokenizer
57
  self.run = run
58
  # --- to be downloaded & built --- #
59
- self.literal2idiomatic: Optional[List[Tuple[str, str]]] = None
60
- self.dataset: Optional[IdiomifyDataset] = None
 
 
61
 
62
  def prepare_data(self):
63
  """
64
  prepare: download all data needed for this from wandb to local.
65
  """
66
- self.literal2idiomatic = fetch_literal2idiomatic(self.config['literal2idiomatic_ver'], self.run)
67
 
68
  def setup(self, stage: Optional[str] = None):
69
  # --- set up the builders --- #
70
  # build the datasets
71
- srcs = SourcesBuilder(self.tokenizer)(self.literal2idiomatic)
72
- tgts_r = TargetsRightShiftedBuilder(self.tokenizer)(self.literal2idiomatic)
73
- tgts = TargetsBuilder(self.tokenizer)(self.literal2idiomatic)
74
- self.dataset = IdiomifyDataset(srcs, tgts_r, tgts)
 
 
 
 
 
 
 
 
75
 
76
  def train_dataloader(self) -> DataLoader:
77
- return DataLoader(self.dataset, batch_size=self.config['batch_size'],
78
  shuffle=self.config['shuffle'], num_workers=self.config['num_workers'])
 
 
 
 
 
1
+ import pandas as pd
2
  import torch
3
+ from typing import Tuple, Optional
4
  from torch.utils.data import Dataset, DataLoader
5
  from pytorch_lightning import LightningDataModule
6
  from wandb.sdk.wandb_run import Run
 
7
  from idiomify.fetchers import fetch_literal2idiomatic
8
  from idiomify.builders import SourcesBuilder, TargetsBuilder, TargetsRightShiftedBuilder
9
  from transformers import BartTokenizer
 
38
  class IdiomifyDataModule(LightningDataModule):
39
 
40
  # boilerplate - just ignore these
 
 
 
41
  def val_dataloader(self):
42
  pass
43
 
 
53
  self.tokenizer = tokenizer
54
  self.run = run
55
  # --- to be downloaded & built --- #
56
+ self.train_df: Optional[pd.DataFrame] = None
57
+ self.test_df: Optional[pd.DataFrame] = None
58
+ self.train_dataset: Optional[IdiomifyDataset] = None
59
+ self.test_dataset: Optional[IdiomifyDataset] = None
60
 
61
  def prepare_data(self):
62
  """
63
  prepare: download all data needed for this from wandb to local.
64
  """
65
+ self.train_df, self.test_df = fetch_literal2idiomatic(self.config['literal2idiomatic_ver'], self.run)
66
 
67
  def setup(self, stage: Optional[str] = None):
68
  # --- set up the builders --- #
69
  # build the datasets
70
+ self.train_dataset = self.build_dataset(self.train_df)
71
+ self.test_dataset = self.build_dataset(self.test_df)
72
+
73
+ def build_dataset(self, df: pd.DataFrame) -> IdiomifyDataset:
74
+ literal2idiomatic = [
75
+ (row['Literal_Sent'], row['Idiomatic_Sent'])
76
+ for _, row in df.iterrows()
77
+ ]
78
+ srcs = SourcesBuilder(self.tokenizer)(literal2idiomatic)
79
+ tgts_r = TargetsRightShiftedBuilder(self.tokenizer)(literal2idiomatic)
80
+ tgts = TargetsBuilder(self.tokenizer)(literal2idiomatic)
81
+ return IdiomifyDataset(srcs, tgts_r, tgts)
82
 
83
  def train_dataloader(self) -> DataLoader:
84
+ return DataLoader(self.train_dataset, batch_size=self.config['batch_size'],
85
  shuffle=self.config['shuffle'], num_workers=self.config['num_workers'])
86
+
87
+ def test_dataloader(self):
88
+ return DataLoader(self.test_dataset, batch_size=self.config['batch_size'],
89
+ shuffle=False, num_workers=self.config['num_workers'])
idiomify/fetchers.py CHANGED
@@ -1,25 +1,18 @@
1
- import csv
2
- from os import path
3
  import yaml
4
  import wandb
5
- import requests
 
6
  from typing import Tuple, List
7
  from wandb.sdk.wandb_run import Run
8
  from idiomify.paths import CONFIG_YAML, idioms_dir, literal2idiomatic, seq2seq_dir
9
  from idiomify.urls import PIE_URL
10
  from transformers import AutoModelForSeq2SeqLM, AutoConfig
11
- from idiomify.models import Seq2Seq
12
 
13
 
14
- def fetch_pie() -> list:
15
- text = requests.get(PIE_URL).text
16
- lines = (line for line in text.split("\n") if line)
17
- reader = csv.reader(lines)
18
- next(reader) # skip the header
19
- return [
20
- row
21
- for row in reader
22
- ]
23
 
24
 
25
  # --- from wandb --- #
@@ -39,7 +32,7 @@ def fetch_idioms(ver: str, run: Run = None) -> List[str]:
39
  return [line.strip() for line in fh]
40
 
41
 
42
- def fetch_literal2idiomatic(ver: str, run: Run = None) -> List[Tuple[str, str]]:
43
  # if run object is given, we track the lineage of the data.
44
  # if not, we get the dataset via wandb Api.
45
  if run:
@@ -47,13 +40,18 @@ def fetch_literal2idiomatic(ver: str, run: Run = None) -> List[Tuple[str, str]]:
47
  else:
48
  artifact = wandb.Api().artifact(f"eubinecto/idiomify/literal2idiomatic:{ver}", type="dataset")
49
  artifact_dir = artifact.download(root=literal2idiomatic(ver))
50
- tsv_path = path.join(artifact_dir, "all.tsv")
51
- with open(tsv_path, 'r') as fh:
52
- reader = csv.reader(fh, delimiter="\t")
53
- return [(row[0], row[1]) for row in reader]
 
54
 
55
 
56
- def fetch_seq2seq(ver: str, run: Run = None) -> Seq2Seq:
 
 
 
 
57
  if run:
58
  artifact = run.use_artifact(f"seq2seq:{ver}", type="model")
59
  else:
@@ -62,7 +60,7 @@ def fetch_seq2seq(ver: str, run: Run = None) -> Seq2Seq:
62
  artifact_dir = artifact.download(root=seq2seq_dir(ver))
63
  ckpt_path = path.join(artifact_dir, "model.ckpt")
64
  bart = AutoModelForSeq2SeqLM.from_config(AutoConfig.from_pretrained(config['bart']))
65
- alpha = Seq2Seq.load_from_checkpoint(ckpt_path, bart=bart)
66
  return alpha
67
 
68
 
 
 
 
1
  import yaml
2
  import wandb
3
+ from os import path
4
+ import pandas as pd
5
  from typing import Tuple, List
6
  from wandb.sdk.wandb_run import Run
7
  from idiomify.paths import CONFIG_YAML, idioms_dir, literal2idiomatic, seq2seq_dir
8
  from idiomify.urls import PIE_URL
9
  from transformers import AutoModelForSeq2SeqLM, AutoConfig
10
+ from idiomify.models import Idiomifier
11
 
12
 
13
+ def fetch_pie() -> pd.DataFrame:
14
+ # fetch & parse it directly from the web
15
+ return pd.read_csv(PIE_URL)
 
 
 
 
 
 
16
 
17
 
18
  # --- from wandb --- #
 
32
  return [line.strip() for line in fh]
33
 
34
 
35
+ def fetch_literal2idiomatic(ver: str, run: Run = None) -> Tuple[pd.DataFrame, pd.DataFrame]:
36
  # if run object is given, we track the lineage of the data.
37
  # if not, we get the dataset via wandb Api.
38
  if run:
 
40
  else:
41
  artifact = wandb.Api().artifact(f"eubinecto/idiomify/literal2idiomatic:{ver}", type="dataset")
42
  artifact_dir = artifact.download(root=literal2idiomatic(ver))
43
+ train_path = path.join(artifact_dir, "train.tsv")
44
+ test_path = path.join(artifact_dir, "test.tsv")
45
+ train_df = pd.read_csv(train_path, sep="\t")
46
+ test_df = pd.read_csv(test_path, sep="\t")
47
+ return train_df, test_df
48
 
49
 
50
+ def fetch_idiomifier(ver: str, run: Run = None) -> Idiomifier:
51
+ """
52
+ you may want to change the name to Idiomifier.
53
+ The current Idiomifier then turns into a pipeline.
54
+ """
55
  if run:
56
  artifact = run.use_artifact(f"seq2seq:{ver}", type="model")
57
  else:
 
60
  artifact_dir = artifact.download(root=seq2seq_dir(ver))
61
  ckpt_path = path.join(artifact_dir, "model.ckpt")
62
  bart = AutoModelForSeq2SeqLM.from_config(AutoConfig.from_pretrained(config['bart']))
63
+ alpha = Idiomifier.load_from_checkpoint(ckpt_path, bart=bart)
64
  return alpha
65
 
66
 
idiomify/models.py CHANGED
@@ -9,8 +9,7 @@ from transformers import BartForConditionalGeneration, BartTokenizer
9
  from idiomify.builders import SourcesBuilder
10
 
11
 
12
- # for training
13
- class Seq2Seq(pl.LightningModule): # noqa
14
  """
15
  the baseline is in here.
16
  """
@@ -58,12 +57,11 @@ class Seq2Seq(pl.LightningModule): # noqa
58
 
59
 
60
  # for inference
61
- class Idiomifier:
62
 
63
- def __init__(self, model: Seq2Seq, tokenizer: BartTokenizer):
64
  self.model = model
65
  self.builder = SourcesBuilder(tokenizer)
66
- self.model.eval()
67
 
68
  def __call__(self, src: str, max_length=100) -> str:
69
  srcs = self.builder(literal2idiomatic=[(src, "")])
 
9
  from idiomify.builders import SourcesBuilder
10
 
11
 
12
+ class Idiomifier(pl.LightningModule): # noqa
 
13
  """
14
  the baseline is in here.
15
  """
 
57
 
58
 
59
  # for inference
60
+ class Pipeline:
61
 
62
+ def __init__(self, model: Idiomifier, tokenizer: BartTokenizer):
63
  self.model = model
64
  self.builder = SourcesBuilder(tokenizer)
 
65
 
66
  def __call__(self, src: str, max_length=100) -> str:
67
  srcs = self.builder(literal2idiomatic=[(src, "")])
idiomify/paths.py CHANGED
@@ -6,12 +6,12 @@ CONFIG_YAML = ROOT_DIR / "config.yaml"
6
 
7
 
8
  def idioms_dir(ver: str) -> Path:
9
- return ARTIFACTS_DIR / f"idioms-{ver}"
10
 
11
 
12
  def literal2idiomatic(ver: str) -> Path:
13
- return ARTIFACTS_DIR / f"literal2idiomatic-{ver}"
14
 
15
 
16
  def seq2seq_dir(ver: str) -> Path:
17
- return ARTIFACTS_DIR / f"seq2seq-{ver}"
 
6
 
7
 
8
  def idioms_dir(ver: str) -> Path:
9
+ return ARTIFACTS_DIR / f"idioms_{ver}"
10
 
11
 
12
  def literal2idiomatic(ver: str) -> Path:
13
+ return ARTIFACTS_DIR / f"literal2idiomatic_{ver}"
14
 
15
 
16
  def seq2seq_dir(ver: str) -> Path:
17
+ return ARTIFACTS_DIR / f"seq2seq_{ver}"
idiomify/preprocess.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+
5
+
6
+ def upsample(df: pd.DataFrame, seed: int) -> pd.DataFrame:
7
+ # TODO: implement upsampling later
8
+ return df
9
+
10
+
11
+ def cleanse(df: pd.DataFrame) -> pd.DataFrame:
12
+ """
13
+ :param df:
14
+ :return:
15
+ """
16
+ # TODO: implement cleansing
17
+ return df
18
+
19
+
20
+ def stratified_split(df: pd.DataFrame, ratio: float, seed: int) -> Tuple[pd.DataFrame, pd.DataFrame]:
21
+ """
22
+ stratified-split the given df into two df's.
23
+ """
24
+ total = len(df)
25
+ ratio_size = int(total * ratio)
26
+ other_size = total - ratio_size
27
+ ratio_df, other_df = train_test_split(df, train_size=ratio_size,
28
+ stratify=df['Idiom'],
29
+ test_size=other_size, random_state=seed,
30
+ shuffle=True)
31
+ return ratio_df, other_df
main_infer.py CHANGED
@@ -1,21 +1,21 @@
1
  import argparse
2
- from idiomify.models import Idiomifier
3
- from idiomify.fetchers import fetch_config, fetch_seq2seq
4
  from transformers import BartTokenizer
5
 
6
 
7
  def main():
8
  parser = argparse.ArgumentParser()
9
- parser.add_argument("--ver", type=str, default="tag011")
10
  parser.add_argument("--src", type=str,
11
  default="If there's any good to loosing my job,"
12
  " it's that I'll now be able to go to school full-time and finish my degree earlier.")
13
  args = parser.parse_args()
14
- config = fetch_config()[args.ver]
15
  config.update(vars(args))
16
- model = fetch_seq2seq(config['ver'])
 
17
  tokenizer = BartTokenizer.from_pretrained(config['bart'])
18
- idiomifier = Idiomifier(model, tokenizer)
19
  src = config['src']
20
  tgt = idiomifier(src=config['src'])
21
  print(src, "\n->", tgt)
 
1
  import argparse
2
+ from idiomify.models import Idiomifier, Pipeline
3
+ from idiomify.fetchers import fetch_config, fetch_idiomifier
4
  from transformers import BartTokenizer
5
 
6
 
7
  def main():
8
  parser = argparse.ArgumentParser()
 
9
  parser.add_argument("--src", type=str,
10
  default="If there's any good to loosing my job,"
11
  " it's that I'll now be able to go to school full-time and finish my degree earlier.")
12
  args = parser.parse_args()
13
+ config = fetch_config()['infer']
14
  config.update(vars(args))
15
+ model = fetch_idiomifier(config['ver'])
16
+ model.eval() # this is crucial
17
  tokenizer = BartTokenizer.from_pretrained(config['bart'])
18
+ idiomifier = Pipeline(model, tokenizer)
19
  src = config['src']
20
  tgt = idiomifier(src=config['src'])
21
  print(src, "\n->", tgt)
main_train.py CHANGED
@@ -8,19 +8,18 @@ from pytorch_lightning.loggers import WandbLogger
8
  from transformers import BartTokenizer, BartForConditionalGeneration
9
  from idiomify.data import IdiomifyDataModule
10
  from idiomify.fetchers import fetch_config
11
- from idiomify.models import Seq2Seq
12
  from idiomify.paths import ROOT_DIR
13
 
14
 
15
  def main():
16
  parser = argparse.ArgumentParser()
17
- parser.add_argument("--ver", type=str, default="tag011")
18
  parser.add_argument("--num_workers", type=int, default=os.cpu_count())
19
  parser.add_argument("--log_every_n_steps", type=int, default=1)
20
  parser.add_argument("--fast_dev_run", action="store_true", default=False)
21
  parser.add_argument("--upload", dest='upload', action='store_true', default=False)
22
  args = parser.parse_args()
23
- config = fetch_config()[args.ver]
24
  config.update(vars(args))
25
  if not config['upload']:
26
  print(colored("WARNING: YOU CHOSE NOT TO UPLOAD. NOTHING BUT LOGS WILL BE SAVED TO WANDB", color="red"))
@@ -28,7 +27,7 @@ def main():
28
  # prepare the model
29
  bart = BartForConditionalGeneration.from_pretrained(config['bart'])
30
  tokenizer = BartTokenizer.from_pretrained(config['bart'])
31
- model = Seq2Seq(bart, config['lr'], tokenizer.bos_token_id, tokenizer.pad_token_id)
32
  # prepare the datamodule
33
  with wandb.init(entity="eubinecto", project="idiomify", config=config) as run:
34
  datamodule = IdiomifyDataModule(config, tokenizer, run)
@@ -46,7 +45,7 @@ def main():
46
  if not config['fast_dev_run'] and trainer.current_epoch == config['max_epochs'] - 1:
47
  ckpt_path = ROOT_DIR / "model.ckpt"
48
  trainer.save_checkpoint(str(ckpt_path))
49
- artifact = wandb.Artifact(name="seq2seq", type="model", metadata=config)
50
  artifact.add_file(str(ckpt_path))
51
  run.log_artifact(artifact, aliases=["latest", config['ver']])
52
  os.remove(str(ckpt_path)) # make sure you remove it after you are done with uploading it
 
8
  from transformers import BartTokenizer, BartForConditionalGeneration
9
  from idiomify.data import IdiomifyDataModule
10
  from idiomify.fetchers import fetch_config
11
+ from idiomify.models import Idiomifier
12
  from idiomify.paths import ROOT_DIR
13
 
14
 
15
  def main():
16
  parser = argparse.ArgumentParser()
 
17
  parser.add_argument("--num_workers", type=int, default=os.cpu_count())
18
  parser.add_argument("--log_every_n_steps", type=int, default=1)
19
  parser.add_argument("--fast_dev_run", action="store_true", default=False)
20
  parser.add_argument("--upload", dest='upload', action='store_true', default=False)
21
  args = parser.parse_args()
22
+ config = fetch_config()['train']
23
  config.update(vars(args))
24
  if not config['upload']:
25
  print(colored("WARNING: YOU CHOSE NOT TO UPLOAD. NOTHING BUT LOGS WILL BE SAVED TO WANDB", color="red"))
 
27
  # prepare the model
28
  bart = BartForConditionalGeneration.from_pretrained(config['bart'])
29
  tokenizer = BartTokenizer.from_pretrained(config['bart'])
30
+ model = Idiomifier(bart, config['lr'], tokenizer.bos_token_id, tokenizer.pad_token_id)
31
  # prepare the datamodule
32
  with wandb.init(entity="eubinecto", project="idiomify", config=config) as run:
33
  datamodule = IdiomifyDataModule(config, tokenizer, run)
 
45
  if not config['fast_dev_run'] and trainer.current_epoch == config['max_epochs'] - 1:
46
  ckpt_path = ROOT_DIR / "model.ckpt"
47
  trainer.save_checkpoint(str(ckpt_path))
48
+ artifact = wandb.Artifact(name="idiomifier", type="model", metadata=config)
49
  artifact.add_file(str(ckpt_path))
50
  run.log_artifact(artifact, aliases=["latest", config['ver']])
51
  os.remove(str(ckpt_path)) # make sure you remove it after you are done with uploading it
main_upload_idioms.py CHANGED
@@ -1,35 +1,31 @@
1
  """
2
- Here, what should you do here?
3
- just upload all idioms here - name it as epie.
4
  """
5
  import os
6
- from idiomify.paths import ROOT_DIR
7
- from idiomify.fetchers import fetch_pie
8
- import argparse
9
  import wandb
 
 
10
 
11
 
12
  def main():
13
- parser = argparse.ArgumentParser()
14
- parser.add_argument("--ver", type=str, default="tag01")
15
- config = vars(parser.parse_args())
16
-
17
- # get the idioms here
18
- if config['ver'] == "tag01":
19
- # only the first 106, and this is for piloting
20
- idioms = set([row[0] for row in fetch_pie()[:106]])
21
- else:
22
- raise NotImplementedError
23
- idioms = list(idioms)
24
 
25
- with wandb.init(entity="eubinecto", project="idiomify", config=config) as run:
26
- artifact = wandb.Artifact(name="idioms", type="dataset")
27
  txt_path = ROOT_DIR / "all.txt"
28
  with open(txt_path, 'w') as fh:
29
  for idiom in idioms:
30
  fh.write(idiom + "\n")
 
 
31
  artifact.add_file(txt_path)
 
32
  run.log_artifact(artifact, aliases=["latest", config['ver']])
 
33
  os.remove(txt_path)
34
 
35
 
 
1
  """
2
+ will do this when I need to.
3
+ Is it absolutely necessary to keep track of idioms separately?
4
  """
5
  import os
 
 
 
6
  import wandb
7
+ from idiomify.fetchers import fetch_literal2idiomatic, fetch_config
8
+ from idiomify.paths import ROOT_DIR
9
 
10
 
11
  def main():
12
+ config = fetch_config()['upload']['idioms']
13
+ train_df, _ = fetch_literal2idiomatic(config['ver'])
14
+ idioms = train_df['Idiom'].tolist()
15
+ idioms = list(set(idioms))
 
 
 
 
 
 
 
16
 
17
+ with wandb.init(entity="eubinecto", project="idiomify") as run:
18
+ # the paths to write datasets in
19
  txt_path = ROOT_DIR / "all.txt"
20
  with open(txt_path, 'w') as fh:
21
  for idiom in idioms:
22
  fh.write(idiom + "\n")
23
+ artifact = wandb.Artifact(name="idioms", type="dataset", description=config['description'],
24
+ metadata=config)
25
  artifact.add_file(txt_path)
26
+ # then, we just log them here.
27
  run.log_artifact(artifact, aliases=["latest", config['ver']])
28
+ # don't forget to remove them
29
  os.remove(txt_path)
30
 
31
 
main_upload_literal2idiomatic.py CHANGED
@@ -1,39 +1,40 @@
1
  """
2
- Here, what should you do here?
3
- just upload all idioms here - name it as epie.
4
  """
5
- import csv
6
  import os
7
  from idiomify.paths import ROOT_DIR
8
- from idiomify.fetchers import fetch_pie
9
- import argparse
10
  import wandb
11
 
12
 
13
  def main():
14
- parser = argparse.ArgumentParser()
15
- parser.add_argument("--ver", type=str, default="tag01")
16
- config = vars(parser.parse_args())
17
 
18
- # get the idioms here
19
- if config['ver'] == "tag01":
20
- # only the first 106, and we use this just for piloting
21
- literal2idiom = [
22
- (row[3], row[2]) for row in fetch_pie()[:106]
23
- ]
24
- else:
25
- raise NotImplementedError
26
-
27
- with wandb.init(entity="eubinecto", project="idiomify", config=config) as run:
28
- artifact = wandb.Artifact(name="literal2idiomatic", type="dataset")
29
- tsv_path = ROOT_DIR / "all.tsv"
30
- with open(tsv_path, 'w') as fh:
31
- writer = csv.writer(fh, delimiter="\t")
32
- for row in literal2idiom:
33
- writer.writerow(row)
34
- artifact.add_file(tsv_path)
 
 
 
 
35
  run.log_artifact(artifact, aliases=["latest", config['ver']])
36
- os.remove(tsv_path)
 
 
37
 
38
 
39
  if __name__ == '__main__':
 
1
  """
2
+ literal2idiomatic ver: d-1-2
 
3
  """
 
4
  import os
5
  from idiomify.paths import ROOT_DIR
6
+ from idiomify.fetchers import fetch_pie, fetch_config
7
+ from idiomify.preprocess import upsample, cleanse, stratified_split
8
  import wandb
9
 
10
 
11
  def main():
 
 
 
12
 
13
+ # here, we use all of them, while splitting them into train & test
14
+ pie_df = fetch_pie()
15
+ config = fetch_config()['upload']['literal2idiomatic']
16
+ train_df, test_df = pie_df.pipe(cleanse)\
17
+ .pipe(upsample, seed=config['seed'])\
18
+ .pipe(stratified_split, ratio=config['train_ratio'], seed=config['seed'])
19
+ # why don't you just "select" the columns? yeah, stop using csv library. just select them.
20
+ train_df = train_df[["Idiom", "Literal_Sent", "Idiomatic_Sent"]]
21
+ test_df = test_df[["Idiom", "Literal_Sent", "Idiomatic_Sent"]]
22
+ dfs = (train_df, test_df)
23
+ with wandb.init(entity="eubinecto", project="idiomify") as run:
24
+ # the paths to write datasets in
25
+ train_path = ROOT_DIR / "train.tsv"
26
+ test_path = ROOT_DIR / "test.tsv"
27
+ paths = (train_path, test_path)
28
+ artifact = wandb.Artifact(name="literal2idiomatic", type="dataset", description=config['description'],
29
+ metadata=config)
30
+ for tsv_path, df in zip(paths, dfs):
31
+ df.to_csv(tsv_path, sep="\t")
32
+ artifact.add_file(tsv_path)
33
+ # then, we just log them here.
34
  run.log_artifact(artifact, aliases=["latest", config['ver']])
35
+ # don't forget to remove them
36
+ for tsv_path in paths:
37
+ os.remove(tsv_path)
38
 
39
 
40
  if __name__ == '__main__':
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  pytorch-lightning==1.5.10
2
  transformers==4.16.2
3
- wandb==0.12.10
 
 
1
  pytorch-lightning==1.5.10
2
  transformers==4.16.2
3
+ wandb==0.12.10
4
+ scikit-learn==1.0.2