[#1] SRCBuilder, TGTBuilder implemented and tested
Browse files- explore/explore_src_builder.py +18 -0
- explore/explore_tgt_builder.py +19 -0
- idiomify/builders.py +31 -32
- idiomify/datamodules.py +3 -3
explore/explore_src_builder.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BartTokenizer
|
2 |
+
from idiomify.builders import SRCBuilder
|
3 |
+
|
4 |
+
BATCH = [
|
5 |
+
("I could die at any moment", "I could kick the bucket at any moment"),
|
6 |
+
("Speak plainly", "Don't beat around the bush")
|
7 |
+
]
|
8 |
+
|
9 |
+
|
10 |
+
def main():
|
11 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
|
12 |
+
builder = SRCBuilder(tokenizer)
|
13 |
+
src = builder(BATCH)
|
14 |
+
print(src)
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == '__main__':
|
18 |
+
main()
|
explore/explore_tgt_builder.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BartTokenizer
|
2 |
+
from idiomify.builders import TGTBuilder
|
3 |
+
|
4 |
+
BATCH = [
|
5 |
+
("I could die at any moment", "I could kick the bucket at any moment"),
|
6 |
+
("Speak plainly", "Don't beat around the bush")
|
7 |
+
]
|
8 |
+
|
9 |
+
|
10 |
+
def main():
|
11 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
|
12 |
+
builder = TGTBuilder(tokenizer)
|
13 |
+
tgt_r, tgt = builder(BATCH)
|
14 |
+
print(tgt_r)
|
15 |
+
print(tgt)
|
16 |
+
|
17 |
+
|
18 |
+
if __name__ == '__main__':
|
19 |
+
main()
|
idiomify/builders.py
CHANGED
@@ -45,40 +45,39 @@ class Idiom2SubwordsBuilder(TensorBuilder):
|
|
45 |
return input_ids
|
46 |
|
47 |
|
48 |
-
class
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
:param idiom2context: List[Tuple[str, str]], a list of tuples of idiom and context
|
55 |
-
:type idiom2context: List[Tuple[str, str]]
|
56 |
-
:return: The input_ids, token_type_ids, and attention_mask for each context.
|
57 |
-
"""
|
58 |
-
contexts = [context for _, context in idiom2context]
|
59 |
-
encodings = self.tokenizer(text=contexts,
|
60 |
return_tensors="pt",
|
61 |
-
add_special_tokens=True,
|
62 |
-
truncation=True,
|
63 |
padding=True,
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
-
class TargetsBuilder(TensorBuilder):
|
71 |
|
72 |
-
def __call__(self, idiom2sent: List[Tuple[str, str]], idioms: List[str]) -> torch.Tensor:
|
73 |
-
"""
|
74 |
-
Given a list of idioms and a list of sentences, return a list of indices of the idioms in the sentences
|
75 |
-
:param idiom2sent: A list of tuples, where each tuple is an idiom and its corresponding sentence
|
76 |
-
:type idiom2sent: List[Tuple[str, str]]
|
77 |
-
:param idioms: A list of idioms
|
78 |
-
:type idioms: List[str]
|
79 |
-
:return: A tensor of indices of the idioms in the list of idioms.
|
80 |
-
"""
|
81 |
-
return torch.LongTensor([
|
82 |
-
idioms.index(idiom)
|
83 |
-
for idiom, _ in idiom2sent
|
84 |
-
])
|
|
|
45 |
return input_ids
|
46 |
|
47 |
|
48 |
+
class SRCBuilder(TensorBuilder):
|
49 |
+
"""
|
50 |
+
to be used for both training and inference
|
51 |
+
"""
|
52 |
+
def __call__(self, literal2idiomatic: List[Tuple[str, str]]) -> torch.Tensor:
|
53 |
+
encodings = self.tokenizer(text=[literal for literal, _ in literal2idiomatic],
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return_tensors="pt",
|
|
|
|
|
55 |
padding=True,
|
56 |
+
truncation=True,
|
57 |
+
add_special_tokens=True)
|
58 |
+
src = torch.stack([encodings['input_ids'],
|
59 |
+
encodings['attention_mask']], dim=1) # (N, 2, L)
|
60 |
+
return src # (N, 2, L)
|
61 |
+
|
62 |
+
|
63 |
+
class TGTBuilder(TensorBuilder):
|
64 |
+
"""
|
65 |
+
This is to be used only for training. As for inference, we don't need this.
|
66 |
+
"""
|
67 |
+
def __call__(self, literal2idiomatic: List[Tuple[str, str]]) -> Tuple[torch.Tensor, torch.Tensor]:
|
68 |
+
encodings_r = self.tokenizer([
|
69 |
+
self.tokenizer.bos_token + idiomatic # starts with bos, but does not end with eos (right-shifted)
|
70 |
+
for _, idiomatic in literal2idiomatic
|
71 |
+
], return_tensors="pt", add_special_tokens=False, padding=True, truncation=True)
|
72 |
+
encodings = self.tokenizer([
|
73 |
+
idiomatic + self.tokenizer.eos_token # no bos, but ends with eos
|
74 |
+
for _, idiomatic in literal2idiomatic
|
75 |
+
], return_tensors="pt", add_special_tokens=False, padding=True, truncation=True)
|
76 |
+
tgt_r = torch.stack([encodings_r['input_ids'],
|
77 |
+
encodings_r['attention_mask']], dim=1) # (N, 2, L)
|
78 |
+
tgt = torch.stack([encodings['input_ids'],
|
79 |
+
encodings['attention_mask']], dim=1) # (N, 2, L)
|
80 |
+
return tgt_r, tgt
|
81 |
|
82 |
|
|
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
idiomify/datamodules.py
CHANGED
@@ -3,7 +3,7 @@ from typing import Tuple, Optional, List
|
|
3 |
from torch.utils.data import Dataset, DataLoader
|
4 |
from pytorch_lightning import LightningDataModule
|
5 |
from idiomify.fetchers import fetch_idiom2def, fetch_epie
|
6 |
-
from idiomify.builders import Idiom2DefBuilder, Idiom2ContextBuilder,
|
7 |
from transformers import BertTokenizer
|
8 |
|
9 |
|
@@ -67,7 +67,7 @@ class Idiom2DefDataModule(LightningDataModule):
|
|
67 |
# --- set up the builders --- #
|
68 |
# build the datasets
|
69 |
X = Idiom2DefBuilder(self.tokenizer)(self.idiom2def, self.config['k'])
|
70 |
-
y =
|
71 |
self.dataset = IdiomifyDataset(X, y)
|
72 |
|
73 |
def train_dataloader(self) -> DataLoader:
|
@@ -107,7 +107,7 @@ class Idiom2ContextsDataModule(LightningDataModule):
|
|
107 |
def setup(self, stage: Optional[str] = None):
|
108 |
# build the datasets
|
109 |
X = Idiom2ContextBuilder(self.tokenizer)(self.idiom2context)
|
110 |
-
y =
|
111 |
self.dataset = IdiomifyDataset(X, y)
|
112 |
|
113 |
def train_dataloader(self):
|
|
|
3 |
from torch.utils.data import Dataset, DataLoader
|
4 |
from pytorch_lightning import LightningDataModule
|
5 |
from idiomify.fetchers import fetch_idiom2def, fetch_epie
|
6 |
+
from idiomify.builders import Idiom2DefBuilder, Idiom2ContextBuilder, LabelsBuilder
|
7 |
from transformers import BertTokenizer
|
8 |
|
9 |
|
|
|
67 |
# --- set up the builders --- #
|
68 |
# build the datasets
|
69 |
X = Idiom2DefBuilder(self.tokenizer)(self.idiom2def, self.config['k'])
|
70 |
+
y = LabelsBuilder(self.tokenizer)(self.idiom2def, self.idioms)
|
71 |
self.dataset = IdiomifyDataset(X, y)
|
72 |
|
73 |
def train_dataloader(self) -> DataLoader:
|
|
|
107 |
def setup(self, stage: Optional[str] = None):
|
108 |
# build the datasets
|
109 |
X = Idiom2ContextBuilder(self.tokenizer)(self.idiom2context)
|
110 |
+
y = LabelsBuilder(self.tokenizer)(self.idiom2context, self.idioms)
|
111 |
self.dataset = IdiomifyDataset(X, y)
|
112 |
|
113 |
def train_dataloader(self):
|