Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
@@ -11,3 +11,72 @@ license: apache-2.0
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
This app asks the user to input a movie review as a text string, and predicts whether the sentiment of the review is 'Positive' or 'Negative'.
|
16 |
+
|
17 |
+
The prediction is made using a Bidirectional Encoder Representations from Transformers (BERT) model, namely a fine-tuned version of DistilBERT (https://arxiv.org/abs/1910.01108)
|
18 |
+
|
19 |
+
We started with the DistilBertForSequenceClassification pre-trained model in the Hugging Face transformers library (https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/distilbert#transformers.DistilBertForSequenceClassification) and DistilBertTokenizerFast (https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/distilbert#transformers.DistilBertTokenizerFast)
|
20 |
+
|
21 |
+
We fine-tuned the model using the IMDb Large Movie Review Dataset (https://ai.stanford.edu/~amaas/data/sentiment/) for 3 epochs using batch sizes of 16 samples and a learning rate of 1e-5. The loss and accuracy progressed as follows:
|
22 |
+
|
23 |
+
Epoch 0001 of 0003, batch 0000 of 2188 === Loss: 0.6800
|
24 |
+
|
25 |
+
Epoch 0001 of 0003, batch 0250 of 2188 === Loss: 0.2488
|
26 |
+
|
27 |
+
Epoch 0001 of 0003, batch 0500 of 2188 === Loss: 0.4501
|
28 |
+
|
29 |
+
Epoch 0001 of 0003, batch 0750 of 2188 === Loss: 0.1309
|
30 |
+
|
31 |
+
Epoch 0001 of 0003, batch 1000 of 2188 === Loss: 0.4273
|
32 |
+
|
33 |
+
Epoch 0001 of 0003, batch 1250 of 2188 === Loss: 0.3193
|
34 |
+
|
35 |
+
Epoch 0001 of 0003, batch 1500 of 2188 === Loss: 0.5093
|
36 |
+
|
37 |
+
Epoch 0001 of 0003, batch 1750 of 2188 === Loss: 0.4583
|
38 |
+
|
39 |
+
Epoch 0001 of 0003, batch 2000 of 2188 === Loss: 0.3154
|
40 |
+
|
41 |
+
Training accuracy: 96.62 === Valid accuracy: 92.54
|
42 |
+
|
43 |
+
Epoch 0002 of 0003, batch 0000 of 2188 === Loss: 0.1179
|
44 |
+
|
45 |
+
Epoch 0002 of 0003, batch 0250 of 2188 === Loss: 0.0136
|
46 |
+
|
47 |
+
Epoch 0002 of 0003, batch 0500 of 2188 === Loss: 0.1435
|
48 |
+
|
49 |
+
Epoch 0002 of 0003, batch 0750 of 2188 === Loss: 0.0454
|
50 |
+
|
51 |
+
Epoch 0002 of 0003, batch 1000 of 2188 === Loss: 0.0768
|
52 |
+
|
53 |
+
Epoch 0002 of 0003, batch 1250 of 2188 === Loss: 0.2802
|
54 |
+
|
55 |
+
Epoch 0002 of 0003, batch 1500 of 2188 === Loss: 0.0200
|
56 |
+
|
57 |
+
Epoch 0002 of 0003, batch 1750 of 2188 === Loss: 0.1257
|
58 |
+
|
59 |
+
Epoch 0002 of 0003, batch 2000 of 2188 === Loss: 0.1308
|
60 |
+
|
61 |
+
Training accuracy: 98.76 === Valid accuracy: 92.46
|
62 |
+
|
63 |
+
Epoch 0003 of 0003, batch 0000 of 2188 === Loss: 0.0074
|
64 |
+
|
65 |
+
Epoch 0003 of 0003, batch 0250 of 2188 === Loss: 0.0039
|
66 |
+
|
67 |
+
Epoch 0003 of 0003, batch 0500 of 2188 === Loss: 0.0611
|
68 |
+
|
69 |
+
Epoch 0003 of 0003, batch 0750 of 2188 === Loss: 0.0306
|
70 |
+
|
71 |
+
Epoch 0003 of 0003, batch 1000 of 2188 === Loss: 0.1513
|
72 |
+
|
73 |
+
Epoch 0003 of 0003, batch 1250 of 2188 === Loss: 0.0014
|
74 |
+
|
75 |
+
Epoch 0003 of 0003, batch 1500 of 2188 === Loss: 0.0020
|
76 |
+
|
77 |
+
Epoch 0003 of 0003, batch 1750 of 2188 === Loss: 0.1905
|
78 |
+
|
79 |
+
Epoch 0003 of 0003, batch 2000 of 2188 === Loss: 0.1545
|
80 |
+
|
81 |
+
Training accuracy: 99.43 === Valid accuracy: 92.38
|
82 |
+
|