Spaces:
Sleeping
Sleeping
File size: 974 Bytes
be12cc9 b6be18b be12cc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import dataclasses
import torch
from qdrant_client import QdrantClient, models
from config import qdrant_location, qdrant_api_key
qdrant = QdrantClient(
qdrant_location,
api_key=qdrant_api_key,
port=443,
timeout=30,
)
def search_vector(query_vector: torch.Tensor, limit: int=20) -> list[models.ScoredPoint]:
hits = qdrant.search(
collection_name="kanji",
# query_vector=query_vector,
query_vector=query_vector.numpy(),
limit=limit,
with_payload=True,
)
return hits
@dataclasses.dataclass
class SearchResult:
kanji: str
font: str
score: float
def format_search_results(hits: list[models.ScoredPoint]) -> list[SearchResult]:
formatted = []
for point in hits:
kanji, font = point.payload["kanji"], point.payload["font"]
formatted.append(SearchResult(
kanji = kanji,
font = font,
score = point.score,
))
return formatted
|