Spaces:
Runtime error
Runtime error
from gradio_client import Client | |
import gradio as gr | |
import os, uuid, json, random, time | |
import datetime | |
from huggingface_hub import hf_api, CommitScheduler, HfApi | |
from pathlib import Path | |
# deckify_private = "ByMatthew/deckify_private" | |
deckify_private = "eth-zurich-cle/deckify_private" | |
repo_id = "eth-zurich-cle/scideck-dataset" | |
feedback_file = Path("output_data/") / f"output_{uuid.uuid4()}.json" | |
feedback_folder = feedback_file.parent | |
scheduler = CommitScheduler( | |
# repo_id="eth-zurich-cle/deckify-dataset", | |
repo_id=repo_id, | |
repo_type="dataset", | |
folder_path=feedback_folder, | |
path_in_repo="output_data", | |
every=10, | |
) | |
# scheduler = CommitScheduler( | |
# repo_id="eth-zurich-cle/deckify-dataset", | |
# repo_type="dataset", | |
# folder_path=feedback_folder, | |
# path_in_repo="input_data", | |
# every=10, | |
# ) | |
api = HfApi() | |
def check_password(username, password): | |
if password == os.environ["ACCESS"]: | |
return True | |
else: | |
return False | |
def func(file, number_of_pages, secret): | |
if secret != os.environ["ACCESS"]: | |
return "Wrong password, please try again" | |
date_string = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
# use only the filename form an absolute path basename | |
dir, filename = os.path.split(file) | |
print(f"dir: {dir}, filename: {filename}") | |
unique_filename = f"{filename.split('.')[0]}_{date_string}.{filename.split('.')[-1]}" | |
print(unique_filename) | |
api.upload_file( | |
# path_or_fileobj="/path/to/local/folder/README.md", | |
path_or_fileobj=file, | |
path_in_repo=f"input_files/{unique_filename}", | |
repo_id=repo_id, | |
repo_type="dataset", | |
) | |
space_runtime = hf_api.get_space_runtime(deckify_private, token=read_key) | |
print(f"Space runtime: {space_runtime}") | |
if not space_runtime.stage == "RUNNING": # might need to check lowercase or something | |
space_runtime_after_restart = hf_api.restart_space(deckify_private, token=read_key) | |
print(f"Space runtime after restart: {space_runtime_after_restart}") | |
max_retries = 20 | |
retry_delay = 10 | |
success = False | |
for i in range(max_retries): | |
space_runtime = hf_api.get_space_runtime(deckify_private, token=read_key) | |
print(f"Space runtime: {space_runtime}") | |
if space_runtime.stage == "RUNNING": | |
success = True | |
break | |
time.sleep(retry_delay) | |
if not success: | |
return "Failed to start the private space in time. Please try again later." | |
client = Client(deckify_private, hf_token=read_key) | |
print(f"Client: {client}") | |
# output, parsed_document = client.predict(file, number_of_pages) | |
output, latex_output, latex_time, openai_time = client.predict(file, number_of_pages) | |
if "Error" in output: | |
return output | |
# generate a random sequence of numbers | |
# s = "".join([str(random.randint(0, 9)) for i in range(10)]) | |
# with open(f"{s}.tex", "w", encoding="utf-8") as f: | |
# f.write(text) | |
save_output(unique_filename, output, number_of_pages, date_string) | |
temp_string = "% The following slides are generated with [[SCIDECK]](https://huggingface.co/spaces/eth-zurich-cle/Scideck)" | |
temp_string += "\n% Generated on " + date_string | |
temp_string += "\n%" + "-"*100 + "\n" | |
output = temp_string + output | |
return output | |
def save_output(unique_filename: str, output: str, num_pages:int, date_string: str, latex_output: str, latex_time: float, openai_time: float) -> None: | |
# Append outputs and using a thread lock to avoid concurrent writes from different users. | |
with scheduler.lock: | |
with feedback_file.open("a") as f: | |
f.write(json.dumps({"input_name": unique_filename, "output": output, | |
"num_pages": num_pages, "timestamp": date_string, | |
"latex": latex_output, "latex_extraction_time": latex_time, | |
"openai_call_time": openai_time})) | |
f.write("\n") | |
def upload_file(file): | |
print(file) | |
return file.name | |
# 📝 If you get an error message, you can send me email with the PDF file attached to this email address: <b>nkoisheke [at] ethz [dot] ch</b>, and I will generate the slides for you. If there are any other issues or questions, please do not hesitate to contact me 🤗 <br> | |
description = r""" | |
<h3> SCIDECK is a tool that allows you to convert your PDF files into a presentation deck.</h3> | |
<br> | |
❗️❗️❗️[<b>Important</b>] Instructions:<br> | |
1️⃣ <b>Upload the PDF document</b>: Select the PDF file you want to convert into slides.<br> | |
2️⃣ <b>Specify the number of pages</b>: Indicate the range of pages you'd like to include in the slide generation. <b>Set it to 0</b> if you want to include all pages. <br> | |
3️⃣ <b>Enter the password provided in the invite email.</b><br> | |
4️⃣ <b>Click the Generate button</b>: Initiate the slide generation process by clicking the designated "Generate" button.<br> | |
5️⃣ <b>Be patient 🙂</b>: Generating the slides could take between 1 minute and 5 minutes.<br> | |
6️⃣ <b>Download the slides</b>: Once the slides are generated, you can download them by clicking the "Copy" button.<br> | |
7️⃣ <b>Feedback</b>: Please fill out the following [[Feedback Form]](https://docs.google.com/forms/d/e/1FAIpQLScFVZJeNSa9L4t8z5B8whzoLvlNpb95bQdroIPID7aNdv0i4w/viewform?fbzx=-3656849655817576014) <br> | |
📝 If you have any other issues or questions, please do not hesitate to contact us at ..... 🤗 <br> | |
Disclaimer: The uploaded files along with the generated outputs will be stored in order to evaluate and improve the service. <br> | |
Note: If the background process is not running, it may take up to 3 min for it to start. <br> | |
ver 0.1 | |
""" | |
# 🖼️ Some examples of slides generated using <b>SCIDECK</b> are shown below: <br> | |
# 1. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [[Paper]](https://arxiv.org/pdf/1502.03167.pdf) [[Slides]](https://drive.google.com/file/d/1Zt5FFH0nKxut-LyEr9pNAIdtgR_lBtIj/view?usp=sharing) <br> | |
# 2. Attention Is All You Need [[Paper]](https://arxiv.org/pdf/1706.03762.pdf) [[Slides]](https://drive.google.com/file/d/1xKgohh_QKV9pD_XjDuXR566h0VJ1S7WI/view?usp=sharing) <br> | |
# 3. Denoising Diffusion Probabilistic Models [[Paper]](https://arxiv.org/pdf/2006.11239.pdf) [[Slides]](https://drive.google.com/file/d/1D2ZfoJpHR3kP0JdsYyjxUq-vjVMV-KTO/view?usp=sharing) <br> | |
read_key = os.environ.get("HF_TOKEN", None) | |
if __name__ == "__main__": | |
# client = Client.duplicate("ByMatthew/deckify_private", hf_token=read_key) | |
temp = "<h1> SCIDECK: Generate slides (LaTeX Beamer) from PDF</h1>" | |
with gr.Blocks() as demo: | |
gr.Markdown(temp) | |
gr.Image("demo.png", width=600, show_download_button=False, show_label=False) | |
gr.Markdown(description) | |
file_output = gr.File() | |
upload_button = gr.UploadButton("Click to Upload a PDF File", file_types=["file"], file_count="single", size="sm") | |
upload_button.upload(upload_file, upload_button, file_output) | |
number_of_pages = gr.Number(label="Number of pages") | |
secret = gr.Textbox(label="Password", type="password") | |
output = gr.Textbox(label="Output", show_copy_button=True, interactive=False) | |
genereate_slides_btn = gr.Button("Generate slides") | |
genereate_slides_btn.click(fn=func, inputs=[upload_button, number_of_pages, secret], outputs=output, api_name="genereate_slides") | |
demo.queue(max_size=30) | |
demo.launch() |