Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import os, torch, io | |
import json | |
import re | |
os.system("python -m unidic download") | |
import httpx | |
# print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.") | |
from melo.api import TTS | |
import tempfile | |
import wave | |
from pydub import AudioSegment | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
BitsAndBytesConfig, | |
) | |
from threading import Thread | |
from gradio_client import Client | |
# client = Client("eswardivi/AIO_Chat") | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"NousResearch/Hermes-2-Pro-Llama-3-8B", quantization_config=quantization_config | |
) | |
tok = AutoTokenizer.from_pretrained("NousResearch/Hermes-2-Pro-Llama-3-8B",revision='8ab73a6800796d84448bc936db9bac5ad9f984ae') | |
terminators = [ | |
tok.eos_token_id, | |
tok.convert_tokens_to_ids("<|eot_id|>") | |
] | |
def validate_url(url): | |
try: | |
response = httpx.get(url, timeout=60.0) | |
response.raise_for_status() | |
return response.text | |
except httpx.RequestError as e: | |
return f"An error occurred while requesting {url}: {str(e)}" | |
except httpx.HTTPStatusError as e: | |
return f"Error response {e.response.status_code} while requesting {url}" | |
except Exception as e: | |
return f"An unexpected error occurred: {str(e)}" | |
def fetch_text(url): | |
print("Entered Webpage Extraction") | |
prefix_url = "https://r.jina.ai/" | |
full_url = prefix_url + url | |
print(full_url) | |
print("Exited Webpage Extraction") | |
return validate_url(full_url) | |
def synthesize(article_url,progress_audio=gr.Progress()): | |
if not article_url.startswith("http://") and not article_url.startswith("https://"): | |
return "URL must start with 'http://' or 'https://'",None | |
text = fetch_text(article_url) | |
if "Error" in text: | |
return text, None | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
template = """ | |
{ | |
"conversation": [ | |
{"speaker": "", "text": ""}, | |
{"speaker": "", "text": ""} | |
] | |
} | |
""" | |
chat = [] | |
chat.append( | |
{ | |
"role": "user", | |
"content": text + """\n Convert the provided text into a short, informative podcast conversation between two experts. The tone should be professional and engaging. Please adhere to the following format and return only JSON: | |
{ | |
"conversation": [ | |
{"speaker": "", "text": ""}, | |
{"speaker": "", "text": ""} | |
] | |
} | |
""", | |
} | |
) | |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
model_inputs = tok([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer( | |
tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
temperature=0.9, | |
eos_token_id=terminators, | |
) | |
print("Entered Generation") | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_text = "" | |
for new_text in streamer: | |
partial_text += new_text | |
# print("Calling API") | |
# result = client.predict( | |
# f"{text} \n Convert the text as Elaborate Conversation between two people as Podcast.\nfollowing this template and return only JSON \n {template}", | |
# 0.9, | |
# True, | |
# 1024, | |
# api_name="/chat" | |
# ) | |
# print("API Call Completed") | |
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}" | |
json_match = re.search(pattern, partial_text) | |
print("Exited Generation") | |
if json_match: | |
conversation=json_match.group() | |
else: | |
conversation = template | |
print(partial_text) | |
print(conversation) | |
speed = 1.0 | |
models = {"EN": TTS(language="EN", device=device)} | |
speakers = ["EN-Default", "EN-US"] | |
combined_audio = AudioSegment.empty() | |
conversation_dict = json.loads(conversation) | |
for i, turn in enumerate(conversation_dict["conversation"]): | |
bio = io.BytesIO() | |
text = turn["text"] | |
speaker = speakers[i % 2] | |
speaker_id = models["EN"].hps.data.spk2id[speaker] | |
models["EN"].tts_to_file(text, speaker_id, bio, speed=1.0, pbar=progress_audio.tqdm, format="wav") | |
bio.seek(0) | |
audio_segment = AudioSegment.from_file(bio, format="wav") | |
combined_audio += audio_segment | |
final_audio_path = "final.mp3" | |
combined_audio.export(final_audio_path, format="mp3") | |
return conversation, final_audio_path | |
with gr.Blocks(theme='gstaff/sketch') as demo: | |
gr.Markdown("# Turn Any Article into a Podcast") | |
gr.Markdown("## Easily convert articles from URLs into listenable audio podcasts.") | |
gr.Markdown("### Instructions") | |
gr.Markdown(""" | |
- **Step 1:** Paste the URL of the article you want to convert into the textbox. | |
- **Step 2:** Click on "Podcastify" to generate the podcast. | |
- **Step 3:** Listen to the podcast or view the conversation. | |
""") | |
gr.Markdown(""" | |
- View the code at [GitHub - NarrateIt](https://github.com/EswarDivi/NarrateIt). | |
""") | |
with gr.Group(): | |
text = gr.Textbox(label="Article Link") | |
btn = gr.Button("Podcastify", variant="primary") | |
with gr.Row(): | |
conv_display = gr.Textbox(label="Conversation", interactive=False) | |
aud = gr.Audio(interactive=False) | |
btn.click(synthesize, inputs=[text], outputs=[conv_display, aud]) | |
gr.Markdown(""" | |
Special thanks to: | |
- [gstaff/sketch](https://huggingface.co/spaces/gstaff/sketch) for the Sketch Theme. | |
- [mrfakename/MeloTTS](https://huggingface.co/spaces/mrfakename/MeloTTS) and [GitHub](https://github.com/myshell-ai/MeloTTS) for MeloTTS. | |
- [Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) for Function Calling Support. | |
- [Jina AI](https://jina.ai/reader/) for the web page parsing. | |
""") | |
demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True,share=True) | |