Spaces:
Running
Running
File size: 1,048 Bytes
d984f4c 20e8047 bd8245e 20e8047 50aecdb 20e8047 bd8245e 20e8047 bfb50b2 20e8047 bd8245e 20e8047 bd8245e 20e8047 bd8245e 20e8047 bd8245e 20e8047 bd8245e bfb50b2 bd8245e 892c9f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from llama_cpp import Llama
import gradio as gr
llm = Llama.from_pretrained(
repo_id="rcarioniporras/model_baseline_llama_gguf",
filename="unsloth.Q4_K_M.gguf",
)
def predict(message, history):
messages = [{"role": "system", "content": "You are a helpful assistant who answers questions in a concise but thorough way. Prioritize clarity and usefulness in all interactions."}]
for user_message, bot_message in history:
if user_message:
messages.append({"role": "user", "content": user_message})
if bot_message:
messages.append({"role": "assistant", "content": bot_message})
messages.append({"role": "user", "content": message})
response = ""
for chunk in llm.create_chat_completion(
stream=True,
messages=messages,
):
part = chunk["choices"][0]["delta"].get("content", None)
if part:
response += part
yield response
demo = gr.ChatInterface(predict, theme="Shivi/calm_seafoam")
if __name__ == "__main__":
demo.launch()
|